Search results
Results From The WOW.Com Content Network
In mathematics, a combination is a selection of items from a set that has distinct members, such that the order of selection does not matter (unlike permutations).For example, given three fruits, say an apple, an orange and a pear, there are three combinations of two that can be drawn from this set: an apple and a pear; an apple and an orange; or a pear and an orange.
Combinatorics is an area of mathematics primarily concerned with counting, both as a means and as an end to obtaining results, and certain properties of finite structures.It is closely related to many other areas of mathematics and has many applications ranging from logic to statistical physics and from evolutionary biology to computer science.
Let be a family of subsets of the set and let be a distinguished element of set .Then suppose there is a predicate (,) that relates a subset to .Denote () to be the set of subsets from for which (,) is true and to be the set of subsets from for which (,) is false, Then () and are disjoint sets, so by the method of summation, the cardinalities are additive [1]
This theorem is part of a collection of remarkably powerful theorems in combinatorics, all of which are related to each other in an informal sense in that it is more straightforward to prove one of these theorems from another of them than from first principles. These include: The König–Egerváry theorem (1931) (Dénes Kőnig, Jenő Egerváry)
An archetypal double counting proof is for the well known formula for the number () of k-combinations (i.e., subsets of size k) of an n-element set: = (+) ().Here a direct bijective proof is not possible: because the right-hand side of the identity is a fraction, there is no set obviously counted by it (it even takes some thought to see that the denominator always evenly divides the numerator).
Combinatorics, a MathWorld article with many references. Combinatorics, from a MathPages.com portal. The Hyperbook of Combinatorics, a collection of math articles links. The Two Cultures of Mathematics by W. T. Gowers, article on problem solving vs theory building
In mathematics, Pascal's rule (or Pascal's formula) is a combinatorial identity about binomial coefficients.It states that for positive natural numbers n and k, + = (), where () is a binomial coefficient; one interpretation of the coefficient of the x k term in the expansion of (1 + x) n.
In combinatorics, the twelvefold way is a systematic classification of 12 related enumerative problems concerning two finite sets, which include the classical problems of counting permutations, combinations, multisets, and partitions either of a set or of a number.