When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Rosenbrock function - Wikipedia

    en.wikipedia.org/wiki/Rosenbrock_function

    In mathematical optimization, the Rosenbrock function is a non-convex function, introduced by Howard H. Rosenbrock in 1960, which is used as a performance test problem for optimization algorithms. [1] It is also known as Rosenbrock's valley or Rosenbrock's banana function. The global minimum is inside a long, narrow, parabolic-shaped flat ...

  3. Test functions for optimization - Wikipedia

    en.wikipedia.org/wiki/Test_functions_for...

    The test functions used to evaluate the algorithms for MOP were taken from Deb, [4] Binh et al. [5] and Binh. [6] The software developed by Deb can be downloaded, [ 7 ] which implements the NSGA-II procedure with GAs, or the program posted on Internet, [ 8 ] which implements the NSGA-II procedure with ES.

  4. Rosenbrock system matrix - Wikipedia

    en.wikipedia.org/wiki/Rosenbrock_system_matrix

    In applied mathematics, the Rosenbrock system matrix or Rosenbrock's system matrix of a linear time-invariant system is a useful representation bridging state-space representation and transfer function matrix form. It was proposed in 1967 by Howard H. Rosenbrock. [1]

  5. Category:Test functions for optimization - Wikipedia

    en.wikipedia.org/wiki/Category:Test_functions...

    Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Pages for logged out editors learn more

  6. Rosenbrock methods - Wikipedia

    en.wikipedia.org/wiki/Rosenbrock_methods

    The idea of Rosenbrock search is also used to initialize some root-finding routines, such as fzero (based on Brent's method) in Matlab. Rosenbrock search is a form of derivative-free search but may perform better on functions with sharp ridges. [6] The method often identifies such a ridge which, in many applications, leads to a solution. [7]

  7. Gradient descent - Wikipedia

    en.wikipedia.org/wiki/Gradient_descent

    The idea is to take repeated steps in the opposite direction of the gradient (or approximate gradient) of the function at the current point, because this is the direction of steepest descent. Conversely, stepping in the direction of the gradient will lead to a trajectory that maximizes that function; the procedure is then known as gradient ascent.

  8. File:Rosenbrock's function in 3D.pdf - Wikipedia

    en.wikipedia.org/wiki/File:Rosenbrock's_function...

    You are free: to share – to copy, distribute and transmit the work; to remix – to adapt the work; Under the following conditions: attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made.

  9. Double descent - Wikipedia

    en.wikipedia.org/wiki/Double_descent

    Double descent in statistics and machine learning is the phenomenon where a model with a small number of parameters and a model with an extremely large number of parameters both have a small training error, but a model whose number of parameters is about the same as the number of data points used to train the model will have a much greater test ...