Search results
Results From The WOW.Com Content Network
A generic representation of a step-growth polymerization. (Single white dots represent monomers and black chains represent oligomers and polymers) [1] Comparison of molecular weight vs conversion plot between step-growth and living chain-growth polymerization
Chain-growth polymerization or chain-growth polymerisation is a polymerization technique where monomer molecules add onto the active site on a growing polymer chain one at a time. [1] There are a limited number of these active sites at any moment during the polymerization which gives this method its key characteristics.
In chain-growth (or chain) polymerization, the only chain-extension reaction step is the addition of a monomer to a growing chain with an active center such as a free radical, cation, or anion. Once the growth of a chain is initiated by formation of an active center, chain propagation is usually rapid by addition of a sequence of monomers.
This is true for step-growth polymerization of linear polymers. For chain-growth polymerization or for branched polymers, the Đ can be much higher. In practice the average length of the polymer chain is limited by such things as the purity of the reactants, the absence of any side reactions (i.e. high yield), and the viscosity of the medium.
In the case of radical or anionic polymerization, chain transfer can occur where the radical at the end of the growing chain can be transferred from the chain to an individual monomer unit causing a new chain to start growing and the previous chain to stop growing. With step-growth polymerization, the reaction can be terminated by adding a ...
Flory postulated that his treatment can also be applied to chain-growth polymerization mechanisms, as the three criteria stated above are satisfied under the assumptions that (1) the probability of chain termination is independent of chain length, and (2) multifunctional co-monomers react randomly with growing polymer chains. [1]
Living polymerization: A chain polymerization from which chain transfer and chain termination are absent. Note : In many cases, the rate of chain initiation is fast compared with the rate of chain propagation, so that the number of kinetic-chain carriers is essentially constant throughout the polymerization.
In conventional covalent polymerization, two models based on step-growth and chain-growth mechanisms are operative. Nowadays, a similar subdivision is acceptable for supramolecular polymerization; isodesmic also known as equal-K model (step-growth mechanism) and cooperative or nucleation-elongation model (chain-growth mechanism).