When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. AB magnitude - Wikipedia

    en.wikipedia.org/wiki/AB_magnitude

    The monochromatic AB magnitude is defined as the logarithm of a spectral flux density with the usual scaling of astronomical magnitudes and a zero-point of about 3 631 janskys (symbol Jy), [1] where 1 Jy = 10 −26 W Hz −1 m −2 = 10 −23 erg s −1 Hz −1 cm −2 ("about" because the true definition of the zero point is based on magnitudes as shown below).

  3. Zero point (photometry) - Wikipedia

    en.wikipedia.org/wiki/Zero_Point_(photometry)

    The zero point is used to calibrate a system to the standard magnitude system, as the flux detected from stars will vary from detector to detector. [2] Traditionally, Vega is used as the calibration star for the zero point magnitude in specific pass bands (U, B, and V), although often, an average of multiple stars is used for higher accuracy. [3]

  4. Apparent magnitude - Wikipedia

    en.wikipedia.org/wiki/Apparent_magnitude

    The most widely used is the AB magnitude system, [15] in which photometric zero points are based on a hypothetical reference spectrum having constant flux per unit frequency interval, rather than using a stellar spectrum or blackbody curve as the reference. The AB magnitude zero point is defined such that an object's AB and Vega-based ...

  5. Flux - Wikipedia

    en.wikipedia.org/wiki/Flux

    Flux describes any effect that appears to pass or travel (whether it actually moves or not) through a surface or substance. Flux is a concept in applied mathematics and vector calculus which has many applications in physics. For transport phenomena, flux is a vector quantity, describing the magnitude and direction of the flow of a substance or ...

  6. Surface integral - Wikipedia

    en.wikipedia.org/wiki/Surface_integral

    The flux is defined as the quantity of fluid flowing through S per unit time. This illustration implies that if the vector field is tangent to S at each point, then the flux is zero because the fluid just flows in parallel to S, and neither in nor out.

  7. Gauss's law - Wikipedia

    en.wikipedia.org/wiki/Gauss's_law

    The electric field is perpendicular, locally, to the equipotential surface of the conductor, and zero inside; its flux πa 2 ·E, by Gauss's law equals πa 2 ·σ/ε 0. Thus, σ = ε 0 E . In problems involving conductors set at known potentials, the potential away from them is obtained by solving Laplace's equation , either analytically or ...

  8. Zero-point energy - Wikipedia

    en.wikipedia.org/wiki/Zero-point_energy

    The important point of this is that the zero-point field energy H F does not affect the Heisenberg equation for a kλ since it is a c-number or constant (i.e. an ordinary number rather than an operator) and commutes with a kλ. We can therefore drop the zero-point field energy from the Hamiltonian, as is usually done.

  9. List of equations in fluid mechanics - Wikipedia

    en.wikipedia.org/wiki/List_of_equations_in_fluid...

    Flux F through a surface, dS is the differential vector area element, n is the unit normal to the surface. Left: No flux passes in the surface, the maximum amount flows normal to the surface. Right: The reduction in flux passing through a surface can be visualized by reduction in F or dS equivalently (resolved into components, θ is angle to ...