Search results
Results From The WOW.Com Content Network
Naturally occurring strontium is nonradioactive and nontoxic at levels normally found in the environment, but 90 Sr is a radiation hazard. [4] 90 Sr undergoes β − decay with a half-life of 28.79 years and a decay energy of 0.546 MeV distributed to an electron, an antineutrino, and the yttrium isotope 90 Y, which in turn undergoes β − decay with a half-life of 64 hours and a decay energy ...
Zirconium-90 mostly forms by successive beta decays out of Strontium-90. A nonradioactive Zirconium sample can be extracted from spent fuel by extracting Strontium-90 and allowing enough of it to decay (e.g. In an RTG). The Zirconium can then be separated from the remaining strontium leaving a very isotopically pure Zr-90 sample.
Strontium-90 is a commonly used beta emitter used in industrial sources. It decays to yttrium-90, which is itself a beta emitter. It is also used as a thermal power source in radioisotope thermoelectric generator (RTG) power packs. These use heat produced by radioactive decay of strontium-90 to generate heat, which can be converted to ...
Yttrium-90 is produced by the nuclear decay of strontium-90 which has a half-life of nearly 29 years and is a fission product of uranium used in nuclear reactors. As the strontium-90 decays, chemical high-purity separation is used to isolate the yttrium-90 before precipitation.
In addition to the four stable isotopes, thirty-two unstable isotopes of strontium are known to exist, ranging from 73 Sr to 108 Sr. Radioactive isotopes of strontium primarily decay into the neighbouring elements yttrium (89 Sr and heavier isotopes, via beta minus decay) and rubidium (85 Sr, 83 Sr and lighter isotopes, via positron emission or ...
Strontium-90 has been used by the Soviet Union in terrestrial RTGs. 90 Sr decays by β − decay into 90 Y, which quickly decays again via β emission. It has a lower decay energy than 238 Pu, but its shorter half life of 28.8 years and lower atomic weight yield a power density for pure metal of 0.95 watts per gram. [42] As 90
strontium-90: 28.79 909 curium-243: 29.1 920 caesium-137: 30.17 952 10 9 seconds (gigaseconds) isotope half-life years 10 9 seconds bismuth-207: 32.9 1.04 titanium-44: 63
But 90 Sr has a 30-year half-life, and 89 Sr a 50.5-day half-life. Thus in the 50.5 days it takes half the 89 Sr atoms to decay, emitting the same number of beta particles as there were decays, less than 0.4% of the 90 Sr atoms have decayed, emitting only 0.4% of the betas. The radioactive emission rate is highest for the shortest lived ...