Search results
Results From The WOW.Com Content Network
SYBR Green fluorescence chart produced in real-time PCR Melting curve produced at the end of real-time PCR. A real-time polymerase chain reaction (real-time PCR, or qPCR when used quantitatively) is a laboratory technique of molecular biology based on the polymerase chain reaction (PCR).
The primary essential parts for this phase include detailing the reaction conditions in full, giving both the amount of RNA used and the total volume of the reaction, give information on the oligonucleotide used as a primer and its concentration, the concentration and type of reverse transcriptase used, and lastly the temperature and amount of ...
MLPA facilitates the amplification and detection of multiple targets with a single primer pair. In a standard multiplex PCR reaction, each fragment needs a unique amplifying primer pair. These primers being present in a large quantity result in various problems such as dimerization and false priming. With MLPA, amplification of probes can be ...
A modification of this process, named Linear-After-The-Exponential-PCR (or LATE-PCR), uses a limiting primer with a higher melting temperature (T m) than the excess primer in order to maintain reaction efficiency as the limiting primer concentration decreases mid-reaction. [3] See also overlap-extension PCR.
The annealing temperature during a polymerase chain reaction determines the specificity of primer annealing. The melting point of the primer sets the upper limit on annealing temperature. At temperatures just below this point, only very specific base pairing between the primer and the template will occur.
In this article, RT-PCR will denote Reverse Transcription PCR. Combined RT-PCR and qPCR are routinely used for analysis of gene expression and quantification of viral RNA in research and clinical settings. The close association between RT-PCR and qPCR has led to metonymic use of the term qPCR to mean RT-PCR.
Polymerase chain reaction itself is the process used to amplify DNA samples, via a temperature-mediated DNA polymerase.The products can be used for sequencing or analysis, and this process is a key part of many genetics research laboratories, along with uses in DNA fingerprinting for forensics and other human genetic cases.
qPCR is unable to distinguish differences in gene expression or copy number variations that are smaller than twofold. On the other hand, dPCR has a higher precision and has been shown to detect differences of less than 30% in gene expression, distinguish between copy number variations that differ by only 1 copy, and identify alleles that occur ...