Search results
Results From The WOW.Com Content Network
The most abundant ion in plant cells is the potassium ion. [2] Plants take up potassium for plant growth and function. A portion of potassium uptake in plants can be attributed to weathering of primary minerals, but plants can also ‘pump’ potassium from deeper soil layers to increase levels of surface K. [2] Potassium stored in plant matter can be returned to the soil during decomposition ...
The eukaryotic cell cycle consists of four distinct phases: G 1 phase, S phase (synthesis), G 2 phase (collectively known as interphase) and M phase (mitosis and cytokinesis). M phase is itself composed of two tightly coupled processes: mitosis, in which the cell's nucleus divides, and cytokinesis, in which the cell's cytoplasm and cell membrane divides forming two daughter cells.
Some plants appear not to load phloem by active transport. In these cases, a mechanism known as the polymer trap mechanism was proposed by Robert Turgeon. [5] In this model, small sugars such as sucrose move into intermediary cells through narrow plasmodesmata, where they are polymerised to raffinose and other larger oligosaccharides. As larger ...
Light micrograph of a moss's leaf cells at 400X magnification. The following outline is provided as an overview of and topical guide to cell biology: . Cell biology – A branch of biology that includes study of cells regarding their physiological properties, structure, and function; the organelles they contain; interactions with their environment; and their life cycle, division, and death.
Structure of a plant cell. Plant cells are the cells present in green plants, photosynthetic eukaryotes of the kingdom Plantae.Their distinctive features include primary cell walls containing cellulose, hemicelluloses and pectin, the presence of plastids with the capability to perform photosynthesis and store starch, a large vacuole that regulates turgor pressure, the absence of flagella or ...
Components of a typical plant cell: a. Plasmodesmata b. Plasma membrane c. Cell wall 1. Chloroplast d. Thylakoid membrane e. Starch grain 2. Vacuole f. Vacuole g. Tonoplast h. Mitochondrion i. Peroxisome j. Cytoplasm k. Small membranous vesicles l. Rough endoplasmic reticulum 3. Nucleus m. Nuclear pore n. Nuclear envelope o. Nucleolus p ...
The concept of diffusion is widely used in many fields, including physics (particle diffusion), chemistry, biology, sociology, economics, statistics, data science, and finance (diffusion of people, ideas, data and price values). The central idea of diffusion, however, is common to all of these: a substance or collection undergoing diffusion ...
Cell synchronization is a process by which cells in a culture at different stages of the cell cycle are brought to the same phase. Cell synchrony is a vital process in the study of cells progressing through the cell cycle as it allows population-wide data to be collected rather than relying solely on single-cell experiments.