Search results
Results From The WOW.Com Content Network
Just as the definite integral of a positive function of one variable represents the area of the region between the graph of the function and the x-axis, the double integral of a positive function of two variables represents the volume of the region between the surface defined by the function (on the three-dimensional Cartesian plane where z = f(x, y)) and the plane which contains its domain. [1]
In mathematics and mathematical physics, Slater integrals are certain integrals of products of three spherical harmonics. They occur naturally when applying an orthonormal basis of functions on the unit sphere that transform in a particular way under rotations in three dimensions. Such integrals are particularly useful when computing properties ...
To find an explicit formula for the surface integral of f over S, we need to parameterize S by defining a system of curvilinear coordinates on S, like the latitude and longitude on a sphere. Let such a parameterization be r(s, t), where (s, t) varies in some region T in the plane. Then, the surface integral is given by
In numerical analysis, Lebedev quadrature, named after Vyacheslav Ivanovich Lebedev, is an approximation to the surface integral of a function over a three-dimensional sphere. The grid is constructed so to have octahedral rotation and inversion symmetry.
The scalar triple product (also called the mixed product, box product, or triple scalar product) is defined as the dot product of one of the vectors with the cross product of the other two. Geometric interpretation
A different technique, which goes back to Laplace (1812), [3] is the following. Let = =. Since the limits on s as y → ±∞ depend on the sign of x, it simplifies the calculation to use the fact that e −x 2 is an even function, and, therefore, the integral over all real numbers is just twice the integral from zero to infinity.
It can also mean a triple integral within a region of a function (,,), and is usually written as: (,,).. A volume integral in cylindrical coordinates is (,,), and a volume integral in spherical coordinates (using the ISO convention for angles with as the azimuth and measured from the polar axis (see more on conventions)) has the form (,,) .
In the mathematical field of geometric measure theory, the coarea formula expresses the integral of a function over an open set in Euclidean space in terms of integrals over the level sets of another function.