Search results
Results From The WOW.Com Content Network
Particular definitions of congruence can be made for groups, rings, vector spaces, modules, semigroups, lattices, and so forth. The common theme is that a congruence is an equivalence relation on an algebraic object that is compatible with the algebraic structure, in the sense that the operations are well-defined on the equivalence classes.
For example, the natural numbers 2 and 6 have a common factor greater than 1, and 6 and 3 have a common factor greater than 1, but 2 and 3 do not have a common factor greater than 1. The empty relation R (defined so that aRb is never true) on a set X is vacuously symmetric and transitive; however, it is not reflexive (unless X itself is empty).
Equinumerosity is compatible with the basic set operations in a way that allows the definition of cardinal arithmetic. [1] Specifically, equinumerosity is compatible with disjoint unions: Given four sets A, B, C and D with A and C on the one hand and B and D on the other hand pairwise disjoint and with A ~ B and C ~ D then A ∪ C ~ B ∪ D.
[3] The usage primarily comes from translations of Euclid's Elements, in which two line segments a and b are called commensurable precisely if there is some third segment c that can be laid end-to-end a whole number of times to produce a segment congruent to a, and also, with a different whole number, a segment congruent to b. Euclid did not ...
The added structure must be compatible, in some sense, with the algebraic structure. Topological group: a group with a topology compatible with the group operation. Lie group: a topological group with a compatible smooth manifold structure. Ordered groups, ordered rings and ordered fields: each type of structure with a compatible partial order.
The smallest friendly number is 6, forming for example, the friendly pair 6 and 28 with abundancy σ(6) / 6 = (1+2+3+6) / 6 = 2, the same as σ(28) / 28 = (1+2+4+7+14+28) / 28 = 2. The shared value 2 is an integer in this case but not in many other cases. Numbers with abundancy 2 are also known as perfect numbers. There are several unsolved ...
[3] The set of submodules of a given module M, together with the two binary operations + (the module spanned by the union of the arguments) and ∩, forms a lattice that satisfies the modular law: Given submodules U, N 1, N 2 of M such that N 1 ⊆ N 2, then the following two submodules are equal: (N 1 + U) ∩ N 2 = N 1 + (U ∩ N 2).
In abstract algebra, a bimodule is an abelian group that is both a left and a right module, such that the left and right multiplications are compatible.Besides appearing naturally in many parts of mathematics, bimodules play a clarifying role, in the sense that many of the relationships between left and right modules become simpler when they are expressed in terms of bimodules.