When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Congruence relation - Wikipedia

    en.wikipedia.org/wiki/Congruence_relation

    Particular definitions of congruence can be made for groups, rings, vector spaces, modules, semigroups, lattices, and so forth. The common theme is that a congruence is an equivalence relation on an algebraic object that is compatible with the algebraic structure, in the sense that the operations are well-defined on the equivalence classes.

  3. Equivalence relation - Wikipedia

    en.wikipedia.org/wiki/Equivalence_relation

    For example, the natural numbers 2 and 6 have a common factor greater than 1, and 6 and 3 have a common factor greater than 1, but 2 and 3 do not have a common factor greater than 1. The empty relation R (defined so that aRb is never true) on a set X is vacuously symmetric and transitive; however, it is not reflexive (unless X itself is empty).

  4. Equinumerosity - Wikipedia

    en.wikipedia.org/wiki/Equinumerosity

    Equinumerosity is compatible with the basic set operations in a way that allows the definition of cardinal arithmetic. [1] Specifically, equinumerosity is compatible with disjoint unions: Given four sets A, B, C and D with A and C on the one hand and B and D on the other hand pairwise disjoint and with A ~ B and C ~ D then A ∪ C ~ B ∪ D.

  5. Commensurability (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Commensurability_(mathematics)

    [3] The usage primarily comes from translations of Euclid's Elements, in which two line segments a and b are called commensurable precisely if there is some third segment c that can be laid end-to-end a whole number of times to produce a segment congruent to a, and also, with a different whole number, a segment congruent to b. Euclid did not ...

  6. Algebraic structure - Wikipedia

    en.wikipedia.org/wiki/Algebraic_structure

    The added structure must be compatible, in some sense, with the algebraic structure. Topological group: a group with a topology compatible with the group operation. Lie group: a topological group with a compatible smooth manifold structure. Ordered groups, ordered rings and ordered fields: each type of structure with a compatible partial order.

  7. Friendly number - Wikipedia

    en.wikipedia.org/wiki/Friendly_number

    The smallest friendly number is 6, forming for example, the friendly pair 6 and 28 with abundancy σ(6) / 6 = (1+2+3+6) / 6 = 2, the same as σ(28) / 28 = (1+2+4+7+14+28) / 28 = 2. The shared value 2 is an integer in this case but not in many other cases. Numbers with abundancy 2 are also known as perfect numbers. There are several unsolved ...

  8. Module (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Module_(mathematics)

    [3] The set of submodules of a given module M, together with the two binary operations + (the module spanned by the union of the arguments) and ∩, forms a lattice that satisfies the modular law: Given submodules U, N 1, N 2 of M such that N 1 ⊆ N 2, then the following two submodules are equal: (N 1 + U) ∩ N 2 = N 1 + (U ∩ N 2).

  9. Bimodule - Wikipedia

    en.wikipedia.org/wiki/Bimodule

    In abstract algebra, a bimodule is an abelian group that is both a left and a right module, such that the left and right multiplications are compatible.Besides appearing naturally in many parts of mathematics, bimodules play a clarifying role, in the sense that many of the relationships between left and right modules become simpler when they are expressed in terms of bimodules.