When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. List of random number generators - Wikipedia

    en.wikipedia.org/wiki/List_of_random_number...

    Widely used in many programs, e.g. it is used in Excel 2003 and later versions for the Excel function RAND [8] and it was the default generator in the language Python up to version 2.2. [ 9 ] Rule 30

  3. Mersenne Twister - Wikipedia

    en.wikipedia.org/wiki/Mersenne_Twister

    The Mersenne Twister is a general-purpose pseudorandom number generator (PRNG) developed in 1997 by Makoto Matsumoto (松本 眞) and Takuji Nishimura (西村 拓士). [1] [2] Its name derives from the choice of a Mersenne prime as its period length. The Mersenne Twister was designed specifically to rectify most of the flaws found in older PRNGs.

  4. Random number generation - Wikipedia

    en.wikipedia.org/wiki/Random_number_generation

    Random number generation is a process by which, often by means of a random number generator (RNG), a sequence of numbers or symbols is generated that cannot be reasonably predicted better than by random chance. This means that the particular outcome sequence will contain some patterns detectable in hindsight but impossible to foresee.

  5. Pseudorandom number generator - Wikipedia

    en.wikipedia.org/wiki/Pseudorandom_number_generator

    It can be shown that if is a pseudo-random number generator for the uniform distribution on (,) and if is the CDF of some given probability distribution , then is a pseudo-random number generator for , where : (,) is the percentile of , i.e. ():= {: ()}. Intuitively, an arbitrary distribution can be simulated from a simulation of the standard ...

  6. Wichmann–Hill - Wikipedia

    en.wikipedia.org/wiki/Wichmann–Hill

    Wichmann–Hill is a pseudorandom number generator proposed in 1982 by Brian Wichmann and David Hill. [1] It consists of three linear congruential generators with different prime moduli, each of which is used to produce a uniformly distributed number between 0 and 1. These are summed, modulo 1, to produce the result. [2]

  7. Blum Blum Shub - Wikipedia

    en.wikipedia.org/wiki/Blum_Blum_Shub

    The performance of the BBS random-number generator depends on the size of the modulus M and the number of bits per iteration j. While lowering M or increasing j makes the algorithm faster, doing so also reduces the security. A 2005 paper gives concrete, as opposed to asymptotic, security proof of BBS, for a given M and j. The result can also be ...

  8. Middle-square method - Wikipedia

    en.wikipedia.org/wiki/Middle-square_method

    This process is then repeated to generate more numbers. The value of n must be even in order for the method to work – if the value of n is odd, then there will not necessarily be a uniquely defined "middle n-digits" to select from. Consider the following: If a 3-digit number is squared, it can yield a 6-digit number (e.g. 540 2 = 291600). If ...

  9. Applications of randomness - Wikipedia

    en.wikipedia.org/wiki/Applications_of_randomness

    If one has a pseudo-random number generator whose output is "sufficiently difficult" to predict, one can generate true random numbers to use as the initial value (i.e., the seed), and then use the pseudo-random number generator to produce numbers for use in cryptographic applications.