When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Area of a circle - Wikipedia

    en.wikipedia.org/wiki/Area_of_a_circle

    Another proof that uses triangles considers the area enclosed by a circle to be made up of an infinite number of triangles (i.e. the triangles each have an angle of d𝜃 at the centre of the circle), each with an area of ⁠ 1 / 2 ⁠ · r 2 · d𝜃 (derived from the expression for the area of a triangle: ⁠ 1 / 2 ⁠ · a · b · sin𝜃 ...

  3. Liu Hui's π algorithm - Wikipedia

    en.wikipedia.org/wiki/Liu_Hui's_π_algorithm

    Liu Hui's method of calculating the area of a circle. Liu Hui's π algorithm was invented by Liu Hui (fl. 3rd century), a mathematician of the state of Cao Wei.Before his time, the ratio of the circumference of a circle to its diameter was often taken experimentally as three in China, while Zhang Heng (78–139) rendered it as 3.1724 (from the proportion of the celestial circle to the diameter ...

  4. Circle - Wikipedia

    en.wikipedia.org/wiki/Circle

    Given a chord of length y and with sagitta of length x, since the sagitta intersects the midpoint of the chord, we know that it is a part of a diameter of the circle. Since the diameter is twice the radius, the "missing" part of the diameter is (2r − x) in length. Using the fact that one part of one chord times the other part is equal to the ...

  5. Circular mil - Wikipedia

    en.wikipedia.org/wiki/Circular_mil

    A circular mil is a unit of area, equal to the area of a circle with a diameter of one mil (one thousandth of an inch or 0.0254 mm). It is equal to π /4 square mils or approximately 5.067 × 10 −4 mm 2 .

  6. Equivalent radius - Wikipedia

    en.wikipedia.org/wiki/Equivalent_radius

    Measurement of tree circumference, the tape calibrated to show diameter, at breast height. The tape assumes a circular shape. The perimeter of a circle of radius R is .Given the perimeter of a non-circular object P, one can calculate its perimeter-equivalent radius by setting

  7. Measurement of a Circle - Wikipedia

    en.wikipedia.org/wiki/Measurement_of_a_Circle

    A page from Archimedes' Measurement of a Circle. Measurement of a Circle or Dimension of the Circle (Greek: Κύκλου μέτρησις, Kuklou metrēsis) [1] is a treatise that consists of three propositions, probably made by Archimedes, ca. 250 BCE. [2] [3] The treatise is only a fraction of what was a longer work. [4] [5]

  8. Area - Wikipedia

    en.wikipedia.org/wiki/Area

    The formula for the area of a circle (more properly called the area enclosed by a circle or the area of a disk) is based on a similar method. Given a circle of radius r, it is possible to partition the circle into sectors, as shown in the figure to the right. Each sector is approximately triangular in shape, and the sectors can be rearranged to ...

  9. Gauss circle problem - Wikipedia

    en.wikipedia.org/wiki/Gauss_circle_problem

    Gauss's circle problem asks how many points there are inside this circle of the form (,) where and are both integers. Since the equation of this circle is given in Cartesian coordinates by x 2 + y 2 = r 2 {\displaystyle x^{2}+y^{2}=r^{2}} , the question is equivalently asking how many pairs of integers m and n there are such that