When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Matching (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Matching_(graph_theory)

    A maximal matching is a matching M of a graph G that is not a subset of any other matching. A matching M of a graph G is maximal if every edge in G has a non-empty intersection with at least one edge in M. The following figure shows examples of maximal matchings (red) in three graphs. A maximum matching (also known as maximum-cardinality ...

  3. List of graph theory topics - Wikipedia

    en.wikipedia.org/wiki/List_of_graph_theory_topics

    Bivariegated graph; Cage (graph theory) Cayley graph; Circle graph; Clique graph; Cograph; Common graph; Complement of a graph; Complete graph; Cubic graph; Cycle graph; De Bruijn graph; Dense graph; Dipole graph; Directed acyclic graph; Directed graph; Distance regular graph; Distance-transitive graph; Edge-transitive graph; Interval graph ...

  4. Graph matching - Wikipedia

    en.wikipedia.org/wiki/Graph_matching

    The case of exact graph matching is known as the graph isomorphism problem. [1] The problem of exact matching of a graph to a part of another graph is called subgraph isomorphism problem. Inexact graph matching refers to matching problems when exact matching is impossible, e.g., when the number of vertices in the two graphs are different. In ...

  5. Perfect matching - Wikipedia

    en.wikipedia.org/wiki/Perfect_matching

    For example, consider the following graphs: [1] In graph (b) there is a perfect matching (of size 3) since all 6 vertices are matched; in graphs (a) and (c) there is a maximum-cardinality matching (of size 2) which is not perfect, since some vertices are unmatched. A perfect matching is also a minimum-size edge cover.

  6. Matching polynomial - Wikipedia

    en.wikipedia.org/wiki/Matching_polynomial

    The Hosoya index of a graph G, its number of matchings, is used in chemoinformatics as a structural descriptor of a molecular graph. It may be evaluated as m G (1) (Gutman 1991). The third type of matching polynomial was introduced by Farrell (1980) as a version of the "acyclic polynomial" used in chemistry.

  7. Matching in hypergraphs - Wikipedia

    en.wikipedia.org/wiki/Matching_in_hypergraphs

    A matching in H is a subset M of E, such that every two hyperedges e 1 and e 2 in M have an empty intersection (have no vertex in common). The matching number of a hypergraph H is the largest size of a matching in H. It is often denoted by ν(H). [1]: 466 [3] As an example, let V be the set {1,2,3,4,5,6,7}.

  8. Maximum cardinality matching - Wikipedia

    en.wikipedia.org/wiki/Maximum_cardinality_matching

    Maximum cardinality matching is a fundamental problem in graph theory. [1] We are given a graph G , and the goal is to find a matching containing as many edges as possible; that is, a maximum cardinality subset of the edges such that each vertex is adjacent to at most one edge of the subset.

  9. Runge–Kutta methods - Wikipedia

    en.wikipedia.org/wiki/Runge–Kutta_methods

    In numerical analysis, the Runge–Kutta methods (English: / ˈ r ʊ ŋ ə ˈ k ʊ t ɑː / ⓘ RUUNG-ə-KUUT-tah [1]) are a family of implicit and explicit iterative methods, which include the Euler method, used in temporal discretization for the approximate solutions of simultaneous nonlinear equations. [2]