Search results
Results From The WOW.Com Content Network
In Euclidean geometry, linear separability is a property of two sets of points. This is most easily visualized in two dimensions (the Euclidean plane ) by thinking of one set of points as being colored blue and the other set of points as being colored red.
Any topological space that is itself finite or countably infinite is separable, for the whole space is a countable dense subset of itself. An important example of an uncountable separable space is the real line, in which the rational numbers form a countable dense subset.
Linear separability, a geometric property of a pair of sets of points in Euclidean geometry; Recursively inseparable sets, in computability theory, pairs of sets of natural numbers that cannot be "separated" with a recursive set
Kirchberger's theorem is a theorem in discrete geometry, on linear separability.The two-dimensional version of the theorem states that, if a finite set of red and blue points in the Euclidean plane has the property that, for every four points, there exists a line separating the red and blue points within those four, then there exists a single line separating all the red points from all the ...
In mathematics, and more specifically in linear algebra, a linear subspace or vector subspace [1] [note 1] is a vector space that is a subset of some larger vector space. A linear subspace is usually simply called a subspace when the context serves to distinguish it from other types of subspaces .
The method of separation of variables is also used to solve a wide range of linear partial differential equations with boundary and initial conditions, such as the heat equation, wave equation, Laplace equation, Helmholtz equation and biharmonic equation.
In an older definition, P(X) was considered separable if each of its irreducible factors in K[X] is separable in the modern definition. [2] In this definition, separability depended on the field K; for example, any polynomial over a perfect field would have been considered separable.
The separability problem is a subject of current research. A separability criterion is a necessary condition a state must satisfy to be separable. In the low-dimensional ( 2 X 2 and 2 X 3 ) cases, the Peres-Horodecki criterion is actually a necessary and sufficient condition for separability.