When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. List of performance analysis tools - Wikipedia

    en.wikipedia.org/wiki/List_of_performance...

    Linux, Windows For GPU profiling and debugging: OpenCL. A tool suite for GPU profiling, GPU debugger and a static kernel analyzer. Free/open source (MIT) AMD uProf by AMD: Linux, Windows C, C++, .NET, Java, Fortran Code profiler, does sampling based profiling on AMD processors. Proprietary DevPartner by Borland / Micro Focus.NET, Java

  3. CUDA - Wikipedia

    en.wikipedia.org/wiki/CUDA

    CUDA is designed to work with programming languages such as C, C++, Fortran and Python. This accessibility makes it easier for specialists in parallel programming to use GPU resources, in contrast to prior APIs like Direct3D and OpenGL , which require advanced skills in graphics programming. [ 7 ]

  4. TensorFlow - Wikipedia

    en.wikipedia.org/wiki/TensorFlow

    For example, TensorFlow Recommenders and TensorFlow Graphics are libraries for their respective functionalities in recommendation systems and graphics, TensorFlow Federated provides a framework for decentralized data, and TensorFlow Cloud allows users to directly interact with Google Cloud to integrate their local code to Google Cloud. [68]

  5. General-purpose computing on graphics processing units

    en.wikipedia.org/wiki/General-purpose_computing...

    General-purpose computing on graphics processing units (GPGPU, or less often GPGP) is the use of a graphics processing unit (GPU), which typically handles computation only for computer graphics, to perform computation in applications traditionally handled by the central processing unit (CPU).

  6. ROCm - Wikipedia

    en.wikipedia.org/wiki/ROCm

    ROCm is free, libre and open-source software (except the GPU firmware blobs [4]), and it is distributed under various licenses. ROCm initially stood for Radeon Open Compute platfor m ; however, due to Open Compute being a registered trademark, ROCm is no longer an acronym — it is simply AMD's open-source stack designed for GPU compute.

  7. Google JAX - Wikipedia

    en.wikipedia.org/wiki/Google_JAX

    JAX is a machine learning framework for transforming numerical functions developed by Google with some contributions from Nvidia. [2] [3] [4] It is described as bringing together a modified version of autograd (automatic obtaining of the gradient function through differentiation of a function) and OpenXLA's XLA (Accelerated Linear Algebra).

  8. Convolutional neural network - Wikipedia

    en.wikipedia.org/wiki/Convolutional_neural_network

    It supports full-fledged interfaces for training in C++ and Python and with additional support for model inference in C# and Java. TensorFlow: Apache 2.0-licensed Theano-like library with support for CPU, GPU, Google's proprietary tensor processing unit (TPU), [160] and mobile devices.

  9. MLIR (software) - Wikipedia

    en.wikipedia.org/wiki/MLIR_(software)

    MLIR (Multi-Level Intermediate Representation) is a unifying software framework for compiler development. [1] MLIR can make optimal use of a variety of computing platforms such as central processing units (CPUs), graphics processing units (GPUs), data processing units (DPUs), Tensor Processing Units (TPUs), field-programmable gate arrays (FPGAs), artificial intelligence (AI) application ...