Search results
Results From The WOW.Com Content Network
In mathematics, the supergolden ratio is a geometrical proportion close to 85/58. Its true value is the real solution of the equation x 3 = x 2 + 1. The name supergolden ratio results from analogy with the golden ratio, the positive solution of the equation x 2 = x + 1. A triangle with side lengths ψ, 1, and 1 ∕ ψ has an angle of exactly ...
In mathematics, specifically linear algebra, the Cauchy–Binet formula, named after Augustin-Louis Cauchy and Jacques Philippe Marie Binet, is an identity for the determinant of the product of two rectangular matrices of transpose shapes (so that the product is well-defined and square). It generalizes the statement that the determinant of a ...
The half-angle formula for cosine can be obtained by replacing with / and taking the square-root of both sides: (/) = (+ ) /. Sine power-reduction formula: an illustrative diagram. The shaded blue and green triangles, and the red-outlined triangle E B D {\displaystyle EBD} are all right-angled and similar, and all contain the angle θ ...
The golden ratio φ and its negative reciprocal −φ −1 are the two roots of the quadratic polynomial x 2 − x − 1. The golden ratio's negative −φ and reciprocal φ −1 are the two roots of the quadratic polynomial x 2 + x − 1. The golden ratio is also an algebraic number and even an algebraic integer.
The formula for an integration by parts is () ′ = [() ()] ′ (). Beside the boundary conditions , we notice that the first integral contains two multiplied functions, one which is integrated in the final integral ( g ′ {\displaystyle g'} becomes g {\displaystyle g} ) and one which is differentiated ( f {\displaystyle f} becomes f ...
Illustration of the sum formula. Draw a horizontal line (the x -axis); mark an origin O. Draw a line from O at an angle α {\displaystyle \alpha } above the horizontal line and a second line at an angle β {\displaystyle \beta } above that; the angle between the second line and the x -axis is α + β . {\displaystyle \alpha +\beta .}
A method similar to Vieta's formula can be found in the work of the 12th century Arabic mathematician Sharaf al-Din al-Tusi. It is plausible that the algebraic advancements made by Arabic mathematicians such as al-Khayyam, al-Tusi, and al-Kashi influenced 16th-century algebraists, with Vieta being the most prominent among them.
where C is the circumference of a circle, d is the diameter, and r is the radius.More generally, = where L and w are, respectively, the perimeter and the width of any curve of constant width.