Search results
Results From The WOW.Com Content Network
The two resistors follow Ohm's law: The plot is a straight line through the origin. The other two devices do not follow Ohm's law. There are, however, components of electrical circuits which do not obey Ohm's law; that is, their relationship between current and voltage (their I–V curve) is nonlinear (or non-ohmic).
The resistivity can be expressed using the SI unit ohm metre (Ω⋅m) — i.e. ohms multiplied by square metres (for the cross-sectional area) then divided by metres (for the length). Both resistance and resistivity describe how difficult it is to make electrical current flow through a material, but unlike resistance, resistivity is an ...
Analogous to Ohm's law for direct-current circuits, electrical impedance may be expressed by the formula E = I Z. So, the voltage drop in an AC circuit is the product of the current and the impedance of the circuit.
Ohm's law is satisfied when the graph is a straight line through the origin. Therefore, the two resistors are ohmic, but the diode and battery are not. For many materials, the current I through the material is proportional to the voltage V applied across it: over a wide range of voltages and currents. Therefore, the resistance and conductance ...
The formula is a combination of Ohm's law and Joule's law: = = =, where P is the power, R is the resistance, V is the voltage across the resistor, and I is the current through the resistor. A linear resistor has a constant resistance value over all applied voltages or currents; many practical resistors are linear over a useful range of currents.
Drude formula is derived in a limited way, namely by assuming that the charge carriers form a classical ideal gas. When quantum theory is considered, the Drude model can be extended to the free electron model , where the carriers follow Fermi–Dirac distribution .
The most fundamental formula for Joule heating is the generalized power equation: = where P {\displaystyle P} is the power (energy per unit time) converted from electrical energy to thermal energy, I {\displaystyle I} is the current travelling through the resistor or other element,
Thus Ohm's law can be explained in terms of drift velocity. The law's most elementary expression is: =, where u is drift velocity, μ is the material's electron mobility, and E is the electric field. In the MKS system, drift velocity has units of m/s, electron mobility, m 2 /(V·s), and electric field, V/m.