When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Vector projection - Wikipedia

    en.wikipedia.org/wiki/Vector_projection

    The vector projection (also known as the vector component or vector resolution) of a vector a on (or onto) a nonzero vector b is the orthogonal projection of a onto a straight line parallel to b. The projection of a onto b is often written as proj b ⁡ a {\displaystyle \operatorname {proj} _{\mathbf {b} }\mathbf {a} } or a ∥ b .

  3. Dykstra's projection algorithm - Wikipedia

    en.wikipedia.org/wiki/Dykstra's_projection_algorithm

    Dykstra's algorithm is a method that computes a point in the intersection of convex sets, and is a variant of the alternating projection method (also called the projections onto convex sets method). In its simplest form, the method finds a point in the intersection of two convex sets by iteratively projecting onto each of the convex set; it ...

  4. Projection (linear algebra) - Wikipedia

    en.wikipedia.org/wiki/Projection_(linear_algebra)

    A square matrix is called a projection matrix if it is equal to its square, i.e. if =. [2]: p. 38 A square matrix is called an orthogonal projection matrix if = = for a real matrix, and respectively = = for a complex matrix, where denotes the transpose of and denotes the adjoint or Hermitian transpose of .

  5. Projections onto convex sets - Wikipedia

    en.wikipedia.org/wiki/Projections_onto_convex_sets

    In mathematics, projections onto convex sets (POCS), sometimes known as the alternating projection method, is a method to find a point in the intersection of two closed convex sets. It is a very simple algorithm and has been rediscovered many times. [1] The simplest case, when the sets are affine spaces, was analyzed by John von Neumann.

  6. Vectorization (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Vectorization_(mathematics)

    For a symmetric matrix A, the vector vec(A) contains more information than is strictly necessary, since the matrix is completely determined by the symmetry together with the lower triangular portion, that is, the n(n + 1)/2 entries on and below the main diagonal. For such matrices, the half-vectorization is sometimes more useful than the ...

  7. Scalar projection - Wikipedia

    en.wikipedia.org/wiki/Scalar_projection

    If 0° ≤ θ ≤ 90°, as in this case, the scalar projection of a on b coincides with the length of the vector projection. Vector projection of a on b (a 1), and vector rejection of a from b (a 2). In mathematics, the scalar projection of a vector on (or onto) a vector , also known as the scalar resolute of in the direction of , is given by:

  8. Triangulation (computer vision) - Wikipedia

    en.wikipedia.org/wiki/Triangulation_(computer...

    A 3D point x is projected onto two camera images through lines (green) which intersect with each camera's focal point, O 1 and O 2. The resulting image points are y 1 and y 2. The green lines intersect at x. In practice, the image points y 1 and y 2 cannot be measured with arbitrary accuracy. Instead points y' 1 and y' 2 are detected and used ...

  9. Distance from a point to a line - Wikipedia

    en.wikipedia.org/wiki/Distance_from_a_point_to_a...

    Also, let Q = (x 1, y 1) be any point on this line and n the vector (a, b) starting at point Q. The vector n is perpendicular to the line, and the distance d from point P to the line is equal to the length of the orthogonal projection of on n. The length of this projection is given by: