When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Floating-point arithmetic - Wikipedia

    en.wikipedia.org/wiki/Floating-point_arithmetic

    A floating-point system can be used to represent, with a fixed number of digits, numbers of very different orders of magnitude — such as the number of meters between galaxies or between protons in an atom. For this reason, floating-point arithmetic is often used to allow very small and very large real numbers that require fast processing times.

  3. IEEE 754 - Wikipedia

    en.wikipedia.org/wiki/IEEE_754

    The IEEE Standard for Floating-Point Arithmetic (IEEE 754) is a technical standard for floating-point arithmetic originally established in 1985 by the Institute of Electrical and Electronics Engineers (IEEE). The standard addressed many problems found in the diverse floating-point implementations that made them difficult to use reliably and ...

  4. IEEE 754-1985 - Wikipedia

    en.wikipedia.org/wiki/IEEE_754-1985

    IEEE 754-1985 [1] is a historic industry standard for representing floating-point numbers in computers, officially adopted in 1985 and superseded in 2008 by IEEE 754-2008, and then again in 2019 by minor revision IEEE 754-2019. [2]

  5. GNU MPFR - Wikipedia

    en.wikipedia.org/wiki/GNU_MPFR

    The GNU Multiple Precision Floating-Point Reliable Library (GNU MPFR) is a GNU portable C library for arbitrary-precision binary floating-point computation with correct rounding, based on GNU Multi-Precision Library.

  6. Unum (number format) - Wikipedia

    en.wikipedia.org/wiki/Unum_(number_format)

    Application-level posit-capable RISC-V core based on CVA6 that can execute all posit instructions, including the quire fused operations. PERCIVAL is the first work that integrates the complete posit ISA and quire in hardware. It allows the native execution of posit instructions as well as the standard floating-point ones simultaneously. LibPosit

  7. IEEE 754-2008 revision - Wikipedia

    en.wikipedia.org/wiki/IEEE_754-2008_revision

    IEEE 754-2008 (previously known as IEEE 754r) is a revision of the IEEE 754 standard for floating-point arithmetic.It was published in August 2008 and is a significant revision to, and replaces, the IEEE 754-1985 standard.

  8. Mixed-precision arithmetic - Wikipedia

    en.wikipedia.org/wiki/Mixed-precision_arithmetic

    A common usage of mixed-precision arithmetic is for operating on inaccurate numbers with a small width and expanding them to a larger, more accurate representation. For example, two half-precision or bfloat16 (16-bit) floating-point numbers may be multiplied together to result in a more accurate single-precision (32-bit) float. [1]

  9. Single-precision floating-point format - Wikipedia

    en.wikipedia.org/wiki/Single-precision_floating...

    A floating-point variable can represent a wider range of numbers than a fixed-point variable of the same bit width at the cost of precision. A signed 32-bit integer variable has a maximum value of 2 31 − 1 = 2,147,483,647, whereas an IEEE 754 32-bit base-2 floating-point variable has a maximum value of (2 − 2 −23) × 2 127 ≈ 3.4028235 ...