Search results
Results From The WOW.Com Content Network
Plant tissue culture relies on the fact that many plant parts have the ability to regenerate into a whole plant (cells of those regenerative plant parts are called totipotent cells which can differentiate into various specialized cells). Single cells, plant cells without cell walls (protoplasts), pieces of leaves, stems or roots can often be ...
Structure of a plant cell. Plant cells are the cells present in green plants, photosynthetic eukaryotes of the kingdom Plantae.Their distinctive features include primary cell walls containing cellulose, hemicelluloses and pectin, the presence of plastids with the capability to perform photosynthesis and store starch, a large vacuole that regulates turgor pressure, the absence of flagella or ...
Plant cell cultures are typically grown as cell suspension cultures in a liquid medium or as callus cultures on a solid medium. The culturing of undifferentiated plant cells and calli requires the proper balance of the plant growth hormones auxin and cytokinin. [citation needed]
In modern usage, "Tissue culture" generally refers to the growth of cells from a multicellular organism in vitro. These cells may be cells isolated from a donor organism (primary cells) or an immortalised cell line. The cells are bathed in a culture medium, which contains essential nutrients and energy sources necessary for the cells' survival. [8]
Auxin diffuses along the shaded side of the plant, and causes cellulose in the cell wall to break, allowing turgor (water pressure) to expand the cell. Growth of cells contributes to the plant's size, unevenly localized growth produces bending, turning and directionalization of organs- for example, stems turning toward light sources ...
Cell growth refers to an increase in the total mass of a cell, including both cytoplasmic, nuclear and organelle volume. [1] Cell growth occurs when the overall rate of cellular biosynthesis (production of biomolecules or anabolism) is greater than the overall rate of cellular degradation (the destruction of biomolecules via the proteasome, lysosome or autophagy, or catabolism).
In addition to growth by cell division, a plant may grow through cell elongation. This occurs when individual cells or groups of cells grow longer. Not all plant cells grow to the same length. When cells on one side of a stem grow longer and faster than cells on the other side, the stem bends to the side of the slower growing cells as a result.
Cells in the meristem can develop into all the other tissues and organs that occur in plants. These cells continue to divide until they differentiate and then lose the ability to divide. Thus, the meristems produce all the cells used for plant growth and function. [3] At the tip of each stem and root, an apical meristem adds cells to their length