When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Cyanide - Wikipedia

    en.wikipedia.org/wiki/Cyanide

    Hydrocyanic acid, also known as hydrogen cyanide, or HCN, is a highly volatile liquid that is produced on a large scale industrially. It is obtained by acidification of cyanide salts. Organic cyanides are usually called nitriles. In nitriles, the −C≡N group is linked by a single covalent bond to carbon.

  3. Carbon–hydrogen bond - Wikipedia

    en.wikipedia.org/wiki/Carbon–hydrogen_bond

    Because of this small difference in electronegativities, the C−H bond is generally regarded as being non-polar. In structural formulas of molecules, the hydrogen atoms are often omitted. Compound classes consisting solely of C−H bonds and C−C bonds are alkanes, alkenes, alkynes, and aromatic hydrocarbons.

  4. Chemical polarity - Wikipedia

    en.wikipedia.org/wiki/Chemical_polarity

    The hydrogen fluoride, HF, molecule is polar by virtue of polar covalent bonds – in the covalent bond electrons are displaced toward the more electronegative fluorine atom. The ammonia molecule, NH 3, is polar as a result of its molecular geometry. The red represents partially negatively charged regions.

  5. Hydrogen cyanide - Wikipedia

    en.wikipedia.org/wiki/Hydrogen_cyanide

    Hydrogen cyanide (formerly known as prussic acid) is a chemical compound with the formula HCN and structural formula H−C≡N.It is a highly toxic and flammable liquid that boils slightly above room temperature, at 25.6 °C (78.1 °F).

  6. Trigonal pyramidal molecular geometry - Wikipedia

    en.wikipedia.org/wiki/Trigonal_pyramidal...

    This would result in the geometry of a regular tetrahedron with each bond angle equal to arccos(− ⁠ 1 / 3 ⁠) ≈ 109.5°. However, the three hydrogen atoms are repelled by the electron lone pair in a way that the geometry is distorted to a trigonal pyramid (regular 3-sided pyramid) with bond angles of 107°.

  7. VSEPR theory - Wikipedia

    en.wikipedia.org/wiki/VSEPR_theory

    Valence shell electron pair repulsion (VSEPR) theory (/ ˈ v ɛ s p ər, v ə ˈ s ɛ p ər / VESP-ər, [1]: 410 və-SEP-ər [2]) is a model used in chemistry to predict the geometry of individual molecules from the number of electron pairs surrounding their central atoms. [3]

  8. Chemical structure - Wikipedia

    en.wikipedia.org/wiki/Chemical_structure

    Phosphorus pentoxide chemical structure in 2D. A chemical structure of a molecule is a spatial arrangement of its atoms and their chemical bonds. Its determination includes a chemist's specifying the molecular geometry and, when feasible and necessary, the electronic structure of the target molecule or other solid.

  9. Seesaw molecular geometry - Wikipedia

    en.wikipedia.org/wiki/Seesaw_molecular_geometry

    The seesaw geometry occurs when a molecule has a steric number of 5, with the central atom being bonded to 4 other atoms and 1 lone pair (AX 4 E 1 in AXE notation). An atom bonded to 5 other atoms (and no lone pairs) forms a trigonal bipyramid with two axial and three equatorial positions, but in the seesaw geometry one of the atoms is replaced ...