Search results
Results From The WOW.Com Content Network
In computer science, the shunting yard algorithm is a method for parsing arithmetical or logical expressions, or a combination of both, specified in infix notation. It can produce either a postfix notation string, also known as reverse Polish notation (RPN), or an abstract syntax tree (AST). [ 1 ]
It is the reverse of Kruskal's algorithm, which is another greedy algorithm to find a minimum spanning tree. Kruskal’s algorithm starts with an empty graph and adds edges while the Reverse-Delete algorithm starts with the original graph and deletes edges from it. The algorithm works as follows: Start with graph G, which contains a list of ...
A skew-symmetric graph is a graph that is isomorphic to its own transpose graph, via a special kind of isomorphism that pairs up all of the vertices. The converse relation of a binary relation is the relation that reverses the ordering of each pair of related objects. If the relation is interpreted as a directed graph, this is the same thing as ...
For general graphs, the best known algorithms for both undirected and directed graphs is a simple greedy algorithm: In the undirected case, the greedy tour is at most O(ln n)-times longer than an optimal tour. [1] The best lower bound known for any deterministic online algorithm is 10/3. [2]
The algorithm tries to use the potentially fast-converging secant method or inverse quadratic interpolation if possible, but it falls back to the more robust bisection method if necessary. Brent's method is due to Richard Brent [ 1 ] and builds on an earlier algorithm by Theodorus Dekker . [ 2 ]
For a graph with E edges and V vertices, Kruskal's algorithm can be shown to run in time O(E log E) time, with simple data structures. Here, O expresses the time in big O notation , and log is a logarithm to any base (since inside O -notation logarithms to all bases are equivalent, because they are the same up to a constant factor).
The complexity of an elementary function is equivalent to that of its inverse, since all elementary functions are analytic and hence invertible by means of Newton's method. In particular, if either exp {\displaystyle \exp } or log {\displaystyle \log } in the complex domain can be computed with some complexity, then that complexity is ...
In graph theory, the planarity testing problem is the algorithmic problem of testing whether a given graph is a planar graph (that is, whether it can be drawn in the plane without edge intersections). This is a well-studied problem in computer science for which many practical algorithms have emerged, many taking advantage of novel data structures.