Search results
Results From The WOW.Com Content Network
The rhombus has a square as a special case, and is a special case of a kite and parallelogram.. In plane Euclidean geometry, a rhombus (pl.: rhombi or rhombuses) is a quadrilateral whose four sides all have the same length.
Another area formula, for two sides B and C and angle θ, is K = B ⋅ C ⋅ sin θ . {\displaystyle K=B\cdot C\cdot \sin \theta .\,} Provided that the parallelogram is not a rhombus, the area can be expressed using sides B and C and angle γ {\displaystyle \gamma } at the intersection of the diagonals: [ 9 ]
rhombus In Euclidean plane geometry , a rectangle is a rectilinear convex polygon or a quadrilateral with four right angles . It can also be defined as: an equiangular quadrilateral, since equiangular means that all of its angles are equal (360°/4 = 90°); or a parallelogram containing a right angle.
In the case of an orthodiagonal quadrilateral (e.g. rhombus, square, and kite), this formula reduces to = since θ is 90°. The area can be also expressed in terms of bimedians as [16] = , where the lengths of the bimedians are m and n and the angle between them is φ.
Johannes Kepler in Harmonices Mundi (1618) named this polyhedron a rhombicosidodecahedron, being short for truncated icosidodecahedral rhombus, with icosidodecahedral rhombus being his name for a rhombic triacontahedron.
Area#Area formulas – Size of a two-dimensional surface; Perimeter#Formulas – Path that surrounds an area; List of second moments of area; List of surface-area-to-volume ratios – Surface area per unit volume; List of surface area formulas – Measure of a two-dimensional surface; List of trigonometric identities
A square is a special case of a rhombus (equal sides, opposite equal angles), a kite (two pairs of adjacent equal sides), a trapezoid (one pair of opposite sides parallel), a parallelogram (all opposite sides parallel), a quadrilateral or tetragon (four-sided polygon), and a rectangle (opposite sides equal, right-angles), and therefore has all ...
Additionally, if a convex kite is not a rhombus, there is a circle outside the kite that is tangent to the extensions of the four sides; therefore, every convex kite that is not a rhombus is an ex-tangential quadrilateral. The convex kites that are not rhombi are exactly the quadrilaterals that are both tangential and ex-tangential. [16]