When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Quintic function - Wikipedia

    en.wikipedia.org/wiki/Quintic_function

    An example of a more complicated (although small enough to be written here) solution is the unique real root of x 5 − 5x + 12 = 0. Let a = √ 2φ −1, b = √ 2φ, and c = 4 √ 5, where φ = ⁠ 1+ √ 5 / 2 ⁠ is the golden ratio. Then the only real solution x = −1.84208... is given by

  3. Root of unity - Wikipedia

    en.wikipedia.org/wiki/Root_of_unity

    For n = 5, 10, none of the non-real roots of unity (which satisfy a quartic equation) is a quadratic integer, but the sum z + z = 2 Re z of each root with its complex conjugate (also a 5th root of unity) is an element of the ring Z[⁠ 1 + √ 5 / 2 ⁠] (D = 5).

  4. nth root - Wikipedia

    en.wikipedia.org/wiki/Nth_root

    For example, −2 has a real 5th root, = … but −2 does not have any real 6th roots. Every non-zero number x, real or complex, has n different complex number nth roots. (In the case x is real, this count includes any real nth roots.) The only complex root of 0 is 0.

  5. Cubic equation - Wikipedia

    en.wikipedia.org/wiki/Cubic_equation

    If the three roots are real and distinct, the discriminant is a product of positive reals, that is > If only one root, say r 1, is real, then r 2 and r 3 are complex conjugates, which implies that r 2 – r 3 is a purely imaginary number, and thus that (r 2 – r 3) 2 is real and negative.

  6. Real-root isolation - Wikipedia

    en.wikipedia.org/wiki/Real-root_isolation

    Vincent's theorem (1834) [4] provides a method for real-root isolation, which is at the basis of the most efficient real-root-isolation algorithms. It concerns the positive real roots of a square-free polynomial (that is a polynomial without multiple roots).

  7. Descartes' rule of signs - Wikipedia

    en.wikipedia.org/wiki/Descartes'_rule_of_signs

    The subtraction of only multiples of 2 from the maximal number of positive roots occurs because the polynomial may have nonreal roots, which always come in pairs since the rule applies to polynomials whose coefficients are real. Thus if the polynomial is known to have all real roots, this rule allows one to find the exact number of positive and ...

  8. Galois theory - Wikipedia

    en.wikipedia.org/wiki/Galois_theory

    For the polynomial f(x) = x 5 − x − 1, the lone real root x = 1.1673... is algebraic, but not expressible in terms of radicals. The other four roots are complex numbers. Van der Waerden [11] cites the polynomial f(x) = x 5 − x − 1. By the rational root theorem, this has no rational zeroes. Neither does it have linear factors modulo 2 or 3.

  9. List of mathematical functions - Wikipedia

    en.wikipedia.org/wiki/List_of_mathematical_functions

    Quintic function: Fifth degree polynomial. Rational functions: A ratio of two polynomials. nth root. Square root: Yields a number whose square is the given one. Cube root: Yields a number whose cube is the given one.