Search results
Results From The WOW.Com Content Network
In principal ideal domains a near converse holds: every nonzero prime ideal is maximal. All principal ideal domains are integrally closed. The previous three statements give the definition of a Dedekind domain, and hence every principal ideal domain is a Dedekind domain. Let A be an integral domain, the following are equivalent. A is a PID.
A ring in which every ideal is principal is called principal, or a principal ideal ring. A principal ideal domain (PID) is an integral domain in which every ideal is principal. Any PID is a unique factorization domain; the normal proof of unique factorization in the integers (the so-called fundamental theorem of arithmetic) holds in any PID.
Left Bézout rings are defined similarly. These conditions are studied in domains as Bézout domains. A principal ideal ring which is also an integral domain is said to be a principal ideal domain (PID). In this article the focus is on the more general concept of a principal ideal ring which is not necessarily a domain.
In mathematics, in the field of abstract algebra, the structure theorem for finitely generated modules over a principal ideal domain is a generalization of the fundamental theorem of finitely generated abelian groups and roughly states that finitely generated modules over a principal ideal domain (PID) can be uniquely decomposed in much the same way that integers have a prime factorization.
In abstract algebra, a discrete valuation ring (DVR) is a principal ideal domain (PID) with exactly one non-zero maximal ideal. This means a DVR is an integral domain R that satisfies any one of the following equivalent conditions: R is a local principal ideal domain, and not a field.
An integral domain A satisfies (ACCP) if and only if the polynomial ring A[t] does. [2] The analogous fact is false if A is not an integral domain. [3] An integral domain where every finitely generated ideal is principal (that is, a Bézout domain) satisfies (ACCP) if and only if it is a principal ideal domain. [4]
In algebra, the elementary divisors of a module over a principal ideal domain (PID) occur in one form of the structure theorem for finitely generated modules over a principal ideal domain. If R {\displaystyle R} is a PID and M {\displaystyle M} a finitely generated R {\displaystyle R} -module, then M is isomorphic to a finite direct sum of the form
In mathematics, the Smith normal form (sometimes abbreviated SNF [1]) is a normal form that can be defined for any matrix (not necessarily square) with entries in a principal ideal domain (PID). The Smith normal form of a matrix is diagonal , and can be obtained from the original matrix by multiplying on the left and right by invertible square ...