Search results
Results From The WOW.Com Content Network
Eukaryotic chromosome structure refers to the levels of packaging from raw DNA molecules to the chromosomal structures seen during metaphase in mitosis or meiosis. Chromosomes contain long strands of DNA containing genetic information. Compared to prokaryotic chromosomes, eukaryotic chromosomes are much larger in size and are linear chromosomes.
Throughout the eukaryotic kingdom, the overall structure of chromosome ends is conserved and is characterized by the telomeric tract - a series of short G-rich repeats. This is succeeded by an extensive subtelomeric region consisting of various types and lengths of repeats - the telomere associated sequences (TAS). [ 1 ]
Chromosome scaffolds play an important role to hold the chromatin into compact chromosomes. Loops of 30 nm structure further condense with scaffold, into higher order structures. [ 19 ] Chromosome scaffolds are made of proteins including condensin , type IIA topoisomerase and kinesin family member 4 (KIF4). [ 20 ]
In biology, the chromosome scaffold is the backbone that supports the structure of the chromosomes. It is composed of a group of non-histone proteins that are essential in the structure and maintenance of eukaryotic chromosomes throughout the cell cycle. These scaffold proteins are responsible for the condensation of chromatin during mitosis. [1]
Organization of DNA in a eukaryotic cell. Each eukaryotic chromosome consists of a long linear DNA molecule associated with proteins, forming a compact complex of proteins and DNA called chromatin. Chromatin contains the vast majority of the DNA in an organism, but a small amount inherited maternally can be found in the mitochondria.
Eukaryotic cells have a variety of internal membrane-bound structures, called organelles, and a cytoskeleton which defines the cell's organization and shape. The nucleus stores the cell's DNA , which is divided into linear bundles called chromosomes ; [ 19 ] these are separated into two matching sets by a microtubular spindle during nuclear ...
As architectural DNA components that organize the genome of eukaryotes into functional units within the cell nucleus, S/MARs mediate structural organization of the chromatin within the nucleus. These elements constitute anchor points of the DNA for the chromatin scaffold and serve to organize the chromatin into structural domains.
The solenoid structure's most obvious function is to help package the DNA so that it is small enough to fit into the nucleus. This is a big task as the nucleus of a mammalian cell has a diameter of approximately 6 μm, whilst the DNA in one human cell would stretch to just over 2 metres long if it were unwound. [6]