When.com Web Search

  1. Ad

    related to: cylinder diameter calculator

Search results

  1. Results From The WOW.Com Content Network
  2. Hydraulic diameter - Wikipedia

    en.wikipedia.org/wiki/Hydraulic_diameter

    The hydraulic diameter, D H, is a commonly used term when handling flow in non-circular tubes and channels. Using this term, one can calculate many things in the same way as for a round tube. When the cross-section is uniform along the tube or channel length, it is defined as [1] [2] =, where

  3. Churchill–Bernstein equation - Wikipedia

    en.wikipedia.org/wiki/Churchill–Bernstein_equation

    is the Reynolds number with the cylinder diameter as its characteristic length; Pr {\displaystyle \Pr } is the Prandtl number . The Churchill–Bernstein equation is valid for a wide range of Reynolds numbers and Prandtl numbers, as long as the product of the two is greater than or equal to 0.2, as defined above.

  4. Cylinder - Wikipedia

    en.wikipedia.org/wiki/Cylinder

    If the elements of the cylinder are perpendicular to the planes containing the bases, the cylinder is a right cylinder, otherwise it is called an oblique cylinder. If the bases are disks (regions whose boundary is a circle) the cylinder is called a circular cylinder. In some elementary treatments, a cylinder always means a circular cylinder. [2]

  5. Reynolds number - Wikipedia

    en.wikipedia.org/wiki/Reynolds_number

    D o is the inside diameter of the outer pipe, D i is the outside diameter of the inner pipe. For calculation involving flow in non-circular ducts, the hydraulic diameter can be substituted for the diameter of a circular duct, with reasonable accuracy, if the aspect ratio AR of the duct cross-section remains in the range ⁠ 1 / 4 ⁠ < AR < 4. [11]

  6. Bore (engine) - Wikipedia

    en.wikipedia.org/wiki/Bore_(engine)

    In a piston engine, the bore (or cylinder bore) is the diameter of each cylinder. Engine displacement is calculated based on bore, stroke length and the number of cylinders: [ 1 ] displacement = π ( ⁠ 1 / 2 ⁠ × bore ) 2 × stroke × n cylinders

  7. Cylinder stress - Wikipedia

    en.wikipedia.org/wiki/Cylinder_stress

    For the thin-walled assumption to be valid, the vessel must have a wall thickness of no more than about one-tenth (often cited as Diameter / t > 20) of its radius. [4] This allows for treating the wall as a surface, and subsequently using the Young–Laplace equation for estimating the hoop stress created by an internal pressure on a thin-walled cylindrical pressure vessel:

  8. Engine displacement - Wikipedia

    en.wikipedia.org/wiki/Engine_displacement

    Engine displacement is the measure of the cylinder volume swept by all of the pistons of a piston engine, excluding the combustion chambers. [1] It is commonly used as an expression of an engine's size, and by extension as an indicator of the power (through mean effective pressure and rotational speed ) an engine might be capable of producing ...

  9. Vortex shedding - Wikipedia

    en.wikipedia.org/wiki/Vortex_shedding

    Where is the dimensionless Strouhal number, is the vortex shedding frequency (Hz), is the diameter of the cylinder (m), and is the flow velocity (m/s). The Strouhal number depends on the Reynolds number R e {\displaystyle \mathrm {Re} } , [ 5 ] but a value of 0.22 is commonly used. [ 6 ]