Search results
Results From The WOW.Com Content Network
In an acute triangle, the sum of the circumradius R and the inradius r is less than half the sum of the shortest sides a and b: [4]: p.105, #2690 + < +, while the reverse inequality holds for an obtuse triangle. For an acute triangle with medians m a, m b, and m c and circumradius R, we have [4]: p.26, #954
A triangle in which one of the angles is a right angle is a right triangle, a triangle in which all of its angles are less than that angle is an acute triangle, and a triangle in which one of it angles is greater than that angle is an obtuse triangle. [8] These definitions date back at least to Euclid. [9]
The third gives symbols listed elsewhere in the table that are similar to it in meaning or appearance, or that may be confused with it; The fourth (if present) links to the related article(s) or adds a clarification note.
In this right triangle: sin A = a/h; cos A = b/h; tan A = a/b. Trigonometric ratios are the ratios between edges of a right triangle. These ratios depend only on one acute angle of the right triangle, since any two right triangles with the same acute angle are similar. [31]
In geometry and trigonometry, a right angle is an angle of exactly 90 degrees or / 2 radians [1] corresponding to a quarter turn. [2] If a ray is placed so that its endpoint is on a line and the adjacent angles are equal, then they are right angles. [3]
The pentagram includes ten isosceles triangles: five acute and five obtuse isosceles triangles. In all of them, the ratio of the longer side to the shorter side is φ. The acute triangles are golden triangles. The obtuse isosceles triangle highlighted via the colored lines in the illustration is a golden gnomon.
In Euclidean geometry, the two acute angles in a right triangle are complementary because the sum of internal angles of a triangle is 180 degrees, and the right angle accounts for 90 degrees. The adjective complementary is from the Latin complementum , associated with the verb complere , "to fill up".
The three altitudes of a triangle intersect at the orthocenter, which for an acute triangle is inside the triangle. The orthocenter of a triangle, usually denoted by H, is the point where the three (possibly extended) altitudes intersect. [1] [2] The orthocenter lies inside the triangle if and only if the triangle is acute.