When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Pascal's law - Wikipedia

    en.wikipedia.org/wiki/Pascal's_law

    Continuum mechanics. Pascal's law (also Pascal's principle[1][2][3] or the principle of transmission of fluid-pressure) is a principle in fluid mechanics given by Blaise Pascal that states that a pressure change at any point in a confined incompressible fluid is transmitted throughout the fluid such that the same change occurs everywhere. [4]

  3. Bernoulli's principle - Wikipedia

    en.wikipedia.org/wiki/Bernoulli's_principle

    A flow of air through a venturi meter. The kinetic energy increases at the expense of the fluid pressure, as shown by the difference in height of the two columns of water. Bernoulli's principle is a key concept in fluid dynamics that relates pressure, speed and height.

  4. Fluid mechanics - Wikipedia

    en.wikipedia.org/wiki/Fluid_mechanics

    Fluid mechanics is the branch of physics concerned with the mechanics of fluids (liquids, gases, and plasmas) and the forces on them. [ 1 ] : 3 It has applications in a wide range of disciplines, including mechanical , aerospace , civil , chemical , and biomedical engineering , as well as geophysics , oceanography , meteorology , astrophysics ...

  5. Transport phenomena - Wikipedia

    en.wikipedia.org/wiki/Transport_phenomena

    e. In engineering, physics, and chemistry, the study of transport phenomena concerns the exchange of mass, energy, charge, momentum and angular momentum between observed and studied systems. While it draws from fields as diverse as continuum mechanics and thermodynamics, it places a heavy emphasis on the commonalities between the topics covered.

  6. List of equations in fluid mechanics - Wikipedia

    en.wikipedia.org/wiki/List_of_equations_in_fluid...

    pconstant is the total pressure at a point on a streamline. p + ρ u 2 / 2 + ρ g y = p c o n s t a n t {\displaystyle p+\rho u^ {2}/2+\rho gy=p_ {\mathrm {constant} }\,\!} Euler equations. ρ = fluid mass density. u is the flow velocity vector. E = total volume energy density. U = internal energy per unit mass of fluid.

  7. Navier–Stokes equations - Wikipedia

    en.wikipedia.org/wiki/Navier–Stokes_equations

    The Navier–Stokes equations (/ nævˈjeɪstoʊks / nav-YAYSTOHKS) are partial differential equations which describe the motion of viscous fluid substances. They were named after French engineer and physicist Claude-Louis Navier and the Irish physicist and mathematician George Gabriel Stokes. They were developed over several decades of ...

  8. Boundary layer - Wikipedia

    en.wikipedia.org/wiki/Boundary_layer

    The boundary layer is the bright-green border, most visible on the back of the hand (click for high-res image). In physics and fluid mechanics, a boundary layer is the thin layer of fluid in the immediate vicinity of a bounding surface formed by the fluid flowing along the surface. The fluid's interaction with the wall induces a no-slip ...

  9. Non-dimensionalization and scaling of the Navier–Stokes ...

    en.wikipedia.org/wiki/Non-dimensionalization_and...

    In fluid mechanics, non-dimensionalization of the Navier–Stokes equations is the conversion of the Navier–Stokes equation to a nondimensional form. This technique can ease the analysis of the problem at hand, and reduce the number of free parameters. Small or large sizes of certain dimensionless parameters indicate the importance of certain ...