Search results
Results From The WOW.Com Content Network
MATLAB (an abbreviation of "MATrix LABoratory" [18]) is a proprietary multi-paradigm programming language and numeric computing environment developed by MathWorks.MATLAB allows matrix manipulations, plotting of functions and data, implementation of algorithms, creation of user interfaces, and interfacing with programs written in other languages.
Such a collection is usually called an array variable or array value. [1] By analogy with the mathematical concepts vector and matrix, array types with one and two indices are often called vector type and matrix type, respectively. More generally, a multidimensional array type can be called a tensor type, by analogy with the mathematical ...
Instead, they used array operations, and use of structured programming constructs was often unneeded, since an operation could be performed on a full array in one statement. For example, the iota function ( ι ) can replace for-loop iteration : ιN when applied to a scalar positive integer yields a one-dimensional array (vector), 1 2 3 ...
Some functions can be followed by an axis indicator in (square) brackets, i.e., this appears between a function and an array and should not be confused with array subscripts written after an array. For example, given the ⌽ (reversal) function and a two-dimensional array, the function by default operates along the last axis but this can be ...
Function rank is an important concept to array programming languages in general, by analogy to tensor rank in mathematics: functions that operate on data may be classified by the number of dimensions they act on. Ordinary multiplication, for example, is a scalar ranked function because it operates on zero-dimensional data (individual numbers).
BASIC (Beginners' All-purpose Symbolic Instruction Code) [1] is a family of general-purpose, high-level programming languages designed for ease of use. The original version was created by John G. Kemeny and Thomas E. Kurtz at Dartmouth College in 1963. They wanted to enable students in non-scientific fields to use computers.
That is, it recomputes the same path costs over and over. However, we can compute it much faster in a bottom-up fashion if we store path costs in a two-dimensional array q[i, j] rather than using a function. This avoids recomputation; all the values needed for array q[i, j] are computed ahead of time only once.
More generally, there are d! possible orders for a given array, one for each permutation of dimensions (with row-major and column-order just 2 special cases), although the lists of stride values are not necessarily permutations of each other, e.g., in the 2-by-3 example above, the strides are (3,1) for row-major and (1,2) for column-major.