When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Gross–Pitaevskii equation - Wikipedia

    en.wikipedia.org/wiki/Gross–Pitaevskii_equation

    The non-linearity of the Gross–Pitaevskii equation has its origin in the interaction between the particles: setting the coupling constant of interaction in the Gross–Pitaevskii equation to zero (see the following section) recovers the single-particle Schrödinger equation describing a particle inside a trapping potential.

  3. List of physics mnemonics - Wikipedia

    en.wikipedia.org/wiki/List_of_physics_mnemonics

    It can be adapted to similar equations e.g. F = ma, v = fλ, E = mcΔT, V = π r 2 h and τ = rF sinθ. When a variable with an exponent or in a function is covered, the corresponding inverse is applied to the remainder, i.e. = and = ⁡.

  4. Conservative force - Wikipedia

    en.wikipedia.org/wiki/Conservative_force

    For example, if a child slides down a frictionless slide, the work done by the gravitational force on the child from the start of the slide to the end is independent of the shape of the slide; it only depends on the vertical displacement of the child.

  5. Gravitational energy - Wikipedia

    en.wikipedia.org/wiki/Gravitational_energy

    For two pairwise interacting point particles, the gravitational potential energy is the work that an outside agent must do in order to quasi-statically bring the masses together (which is therefore, exactly opposite the work done by the gravitational field on the masses): = = where is the displacement vector of the mass, is gravitational force acting on it and denotes scalar product.

  6. Gravitational potential - Wikipedia

    en.wikipedia.org/wiki/Gravitational_potential

    The gravitational potential (V) at a location is the gravitational potential energy (U) at that location per unit mass: =, where m is the mass of the object. Potential energy is equal (in magnitude, but negative) to the work done by the gravitational field moving a body to its given position in space from infinity.

  7. Two-body problem in general relativity - Wikipedia

    en.wikipedia.org/wiki/Two-body_problem_in...

    The equation of motion for the particle derived above = + + can be rewritten using the definition of the Schwarzschild radius r s as = [] + + (+) which is equivalent to a particle moving in a one-dimensional effective potential = + (+) The first two terms are well-known classical energies, the first being the attractive Newtonian gravitational ...

  8. Presentation program - Wikipedia

    en.wikipedia.org/wiki/Presentation_program

    The "slide" analogy is a reference to the slide projector, a device that has become somewhat obsolete due to the use of presentation software. Slides can be printed, or (more usually) displayed on-screen and navigated through at the command of the presenter. An entire presentation can be saved in video format. [6]

  9. Specific potential energy - Wikipedia

    en.wikipedia.org/wiki/Specific_potential_energy

    As a consequence, the gravitational potential satisfies Poisson's equation. See also Green's function for the three-variable Laplace equation and Newtonian potential. The integral may be expressed in terms of known transcendental functions for all ellipsoidal shapes, including the symmetrical and degenerate ones. [5]