When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Lambda calculus - Wikipedia

    en.wikipedia.org/wiki/Lambda_calculus

    Lambda calculus is Turing complete, that is, it is a universal model of computation that can be used to simulate any Turing machine. [3] Its namesake, the Greek letter lambda (λ), is used in lambda expressions and lambda terms to denote binding a variable in a function.

  3. System F - Wikipedia

    en.wikipedia.org/wiki/System_F

    System F (also polymorphic lambda calculus or second-order lambda calculus) is a typed lambda calculus that introduces, to simply typed lambda calculus, a mechanism of universal quantification over types. System F formalizes parametric polymorphism in programming languages, thus forming a theoretical basis for languages such as Haskell and ML

  4. Church encoding - Wikipedia

    en.wikipedia.org/wiki/Church_encoding

    In mathematics, Church encoding is a means of representing data and operators in the lambda calculus. The Church numerals are a representation of the natural numbers using lambda notation. The method is named for Alonzo Church, who first encoded data in the lambda calculus this way.

  5. Fixed-point combinator - Wikipedia

    en.wikipedia.org/wiki/Fixed-point_combinator

    The Y combinator is an implementation of a fixed-point combinator in lambda calculus. Fixed-point combinators may also be easily defined in other functional and imperative languages. The implementation in lambda calculus is more difficult due to limitations in lambda calculus. The fixed-point combinator may be used in a number of different areas:

  6. de Bruijn index - Wikipedia

    en.wikipedia.org/wiki/De_Bruijn_index

    In mathematical logic, the de Bruijn index is a tool invented by the Dutch mathematician Nicolaas Govert de Bruijn for representing terms of lambda calculus without naming the bound variables. [1] Terms written using these indices are invariant with respect to α-conversion , so the check for α-equivalence is the same as that for syntactic ...

  7. Explicit substitution - Wikipedia

    en.wikipedia.org/wiki/Explicit_substitution

    In computer science, lambda calculi are said to have explicit substitutions if they pay special attention to the formalization of the process of substitution.This is in contrast to the standard lambda calculus where substitutions are performed by beta reductions in an implicit manner which is not expressed within the calculus; the "freshness" conditions in such implicit calculi are a notorious ...

  8. Interaction nets - Wikipedia

    en.wikipedia.org/wiki/Interaction_nets

    The latter is guaranteed by the strong confluence property of reduction in this model of computation. Thus interaction nets provide a natural language for massive parallelism. Interaction nets are at the heart of many implementations of the lambda calculus, such as efficient closed reduction [2] and optimal, in Lévy's sense, Lambdascope. [3]

  9. Lambda calculus definition - Wikipedia

    en.wikipedia.org/wiki/Lambda_calculus_definition

    The purpose of β-reduction is to calculate a value. A value in lambda calculus is a function. So β-reduction continues until the expression looks like a function abstraction. A lambda expression that cannot be reduced further, by either β-redex, or η-redex is in normal form. Note that alpha-conversion may convert functions.