Search results
Results From The WOW.Com Content Network
The technique is often performed in cases where it is easier to differentiate the logarithm of a function rather than the function itself. This usually occurs in cases where the function of interest is composed of a product of a number of parts, so that a logarithmic transformation will turn it into a sum of separate parts (which is much easier ...
Logarithmic differentiation is a technique which uses logarithms and its differentiation rules to simplify certain expressions before actually applying the derivative. [ citation needed ] Logarithms can be used to remove exponents, convert products into sums, and convert division into subtraction—each of which may lead to a simplified ...
For example, two numbers can be multiplied just by using a logarithm table and adding. These are often known as logarithmic properties, which are documented in the table below. [2] The first three operations below assume that x = b c and/or y = b d, so that log b (x) = c and log b (y) = d. Derivations also use the log definitions x = b log b (x ...
More generally, the logarithmic derivative of a quotient is the difference of the logarithmic derivatives of the dividend and the divisor: (/) ′ / = (′ ′) / / = ′ ′, just as the logarithm of a quotient is the difference of the logarithms of the dividend and the divisor.
Because log(x) is the sum of the terms of the form log(1 + 2 −k) corresponding to those k for which the factor 1 + 2 −k was included in the product P, log(x) may be computed by simple addition, using a table of log(1 + 2 −k) for all k. Any base may be used for the logarithm table. [53]
In mathematics, the derivative is a fundamental tool that quantifies the sensitivity to change of a function's output with respect to its input. The derivative of a function of a single variable at a chosen input value, when it exists, is the slope of the tangent line to the graph of the function at that point.
However, because integration is the inverse operation of differentiation, Lagrange's notation for higher order derivatives extends to integrals as well. Repeated integrals of f may be written as f ( − 1 ) ( x ) {\displaystyle f^{(-1)}(x)} for the first integral (this is easily confused with the inverse function f − 1 ( x ) {\displaystyle f ...
With those tools, the Leibniz integral rule in n dimensions is [4] = () + + ˙, where Ω(t) is a time-varying domain of integration, ω is a p-form, = is the vector field of the velocity, denotes the interior product with , d x ω is the exterior derivative of ω with respect to the space variables only and ˙ is the time derivative of ω.