Search results
Results From The WOW.Com Content Network
Function pointers allow different code to be executed at runtime. They can also be passed to a function to enable callbacks. Function pointers are supported by third-generation programming languages (such as PL/I, COBOL, Fortran, [1] dBASE dBL [clarification needed], and C) and object-oriented programming languages (such as C++, C#, and D). [2]
In C++ pointers to non-static members of a class can be defined. If a class C has a member T a then &C::a is a pointer to the member a of type T C::*. This member can be an object or a function. [16] They can be used on the right-hand side of operators .* and ->* to access the corresponding member.
Direct access from Java to native operating system and hardware functions requires the use of the Java Native Interface, or since Java 21, the Foreign Function and Memory API, which allow for allocating and managing memory outside of the Java Virtual Machine, as well as calling native (i.e. C/C++) functions.
Languages that separate the programmatic interface of objects from the implementation, like Visual Basic and Delphi, also tend to use this approach, because it allows objects to use a different implementation simply by using a different set of method pointers. The method allows creation of external libraries, where other techniques perhaps may not.
Smart pointers typically keep track of the memory they point to, and may also be used to manage other resources, such as network connections and file handles. Smart pointers were first popularized in the programming language C++ during the first half of the 1990s as rebuttal to criticisms of C++'s lack of automatic garbage collection. [1] [2]
In computer science, pointer analysis, or points-to analysis, is a static code analysis technique that establishes which pointers, or heap references, can point to which variables, or storage locations. It is often a component of more complex analyses such as escape analysis. A closely related technique is shape analysis.
In the C++ programming language, auto_ptr is an obsolete smart pointer class template that was available in previous versions of the C++ standard library (declared in the <memory> header file), which provides some basic RAII features for C++ raw pointers. It has been replaced by the unique_ptr class.
On many common platforms, this use of pointer punning can create problems if different pointers are aligned in machine-specific ways. Furthermore, pointers of different sizes can alias accesses to the same memory, causing problems that are unchecked by the compiler. Even when data size and pointer representation match, however, compilers can ...