Search results
Results From The WOW.Com Content Network
85 is: the product of two prime numbers (5 and 17), and is therefore a semiprime of the form (5.q) where q is prime. specifically, the 24th Semiprime, it being the fourth of the form (5.q). together with 86 and 87, forms the second cluster of three consecutive semiprimes; the first comprising 33, 34, 35. [1]
In mathematics, the supergolden ratio is a geometrical proportion close to 85/58. Its true value is the real solution of the equation x 3 = x 2 + 1. The name supergolden ratio results from analogy with the golden ratio, the positive solution of the equation x 2 = x + 1. A triangle with side lengths ψ, 1, and 1 ∕ ψ has an angle of exactly ...
The square of an integer may also be called a square number or a perfect square. In algebra, the operation of squaring is often generalized to polynomials, other expressions, or values in systems of mathematical values other than the numbers. For instance, the square of the linear polynomial x + 1 is the quadratic polynomial (x + 1) 2 = x 2 ...
A number where some but not all prime factors have multiplicity above 1 is neither square-free nor squareful. The Liouville function λ(n) is 1 if Ω(n) is even, and is -1 if Ω(n) is odd. The Möbius function μ(n) is 0 if n is not square-free. Otherwise μ(n) is 1 if Ω(n) is even, and is −1 if Ω(n) is odd.
Square number 16 as sum of gnomons. In mathematics, a square number or perfect square is an integer that is the square of an integer; [1] in other words, it is the product of some integer with itself. For example, 9 is a square number, since it equals 3 2 and can be written as 3 × 3.
The simple product of two triple products (or the square of a triple product), may be expanded in terms of dot products: [1] (()) (()) = [] This restates in vector notation that the product of the determinants of two 3×3 matrices equals the determinant of their matrix product. As a special case, the square of a triple product is a Gram ...
The Cartesian square of a set X is the Cartesian product X 2 = X × X. An example is the 2-dimensional plane R 2 = R × R where R is the set of real numbers : [ 1 ] R 2 is the set of all points ( x , y ) where x and y are real numbers (see the Cartesian coordinate system ).
In mathematics, summation by parts transforms the summation of products of sequences into other summations, often simplifying the computation or (especially) estimation of certain types of sums. It is also called Abel's lemma or Abel transformation , named after Niels Henrik Abel who introduced it in 1826.