When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. List of arbitrary-precision arithmetic software - Wikipedia

    en.wikipedia.org/wiki/List_of_arbitrary...

    Julia: the built-in BigFloat and BigInt types provide arbitrary-precision floating point and integer arithmetic respectively. newRPL: integers and floats can be of arbitrary precision (up to at least 2000 digits); maximum number of digits configurable (default 32 digits) Nim: bigints and multiple GMP bindings.

  3. Arbitrary-precision arithmetic - Wikipedia

    en.wikipedia.org/wiki/Arbitrary-precision_arithmetic

    Some programming languages such as Lisp, Python, Perl, Haskell, Ruby and Raku use, or have an option to use, arbitrary-precision numbers for all integer arithmetic. Although this reduces performance, it eliminates the possibility of incorrect results (or exceptions) due to simple overflow.

  4. Floating-point arithmetic - Wikipedia

    en.wikipedia.org/wiki/Floating-point_arithmetic

    A floating-point number is a rational number, because it can be represented as one integer divided by another; for example 1.45 × 10 3 is (145/100)×1000 or 145,000 /100. The base determines the fractions that can be represented; for instance, 1/5 cannot be represented exactly as a floating-point number using a binary base, but 1/5 can be ...

  5. Multiplication algorithm - Wikipedia

    en.wikipedia.org/wiki/Multiplication_algorithm

    Some chips implement long multiplication, in hardware or in microcode, for various integer and floating-point word sizes. In arbitrary-precision arithmetic , it is common to use long multiplication with the base set to 2 w , where w is the number of bits in a word, for multiplying relatively small numbers.

  6. Double-precision floating-point format - Wikipedia

    en.wikipedia.org/wiki/Double-precision_floating...

    Double-precision floating-point format (sometimes called FP64 or float64) is a floating-point number format, usually occupying 64 bits in computer memory; it represents a wide range of numeric values by using a floating radix point. Double precision may be chosen when the range or precision of single precision would be insufficient.

  7. Python syntax and semantics - Wikipedia

    en.wikipedia.org/wiki/Python_syntax_and_semantics

    In Python 2 (and most other programming languages), unless explicitly requested, x / y performed integer division, returning a float only if either input was a float. However, because Python is a dynamically-typed language, it was not always possible to tell which operation was being performed, which often led to subtle bugs, thus prompting the ...

  8. Multiply–accumulate operation - Wikipedia

    en.wikipedia.org/wiki/Multiply–accumulate...

    However, floating-point numbers have only a certain amount of mathematical precision. That is, digital floating-point arithmetic is generally not associative or distributive. (See Floating-point arithmetic § Accuracy problems.) Therefore, it makes a difference to the result whether the multiply–add is performed with two roundings, or in one ...

  9. CuPy - Wikipedia

    en.wikipedia.org/wiki/CuPy

    CuPy is an open source library for GPU-accelerated computing with Python programming language, providing support for multi-dimensional arrays, sparse matrices, and a variety of numerical algorithms implemented on top of them. [3]