When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Euler characteristic - Wikipedia

    en.wikipedia.org/wiki/Euler_characteristic

    Any convex polyhedron's surface has Euler characteristic = + = . This equation, stated by Euler in 1758, [2] is known as Euler's polyhedron formula. [3] It corresponds to the Euler characteristic of the sphere (i.e. = ), and applies identically to spherical polyhedra. An illustration of the formula on all Platonic polyhedra is given below.

  3. Regular 4-polytope - Wikipedia

    en.wikipedia.org/wiki/Regular_4-polytope

    The tesseract is one of 6 convex regular 4-polytopes. In mathematics, a regular 4-polytope or regular polychoron is a regular four-dimensional polytope.They are the four-dimensional analogues of the regular polyhedra in three dimensions and the regular polygons in two dimensions.

  4. Euler's Gem - Wikipedia

    en.wikipedia.org/wiki/Euler's_Gem

    Euler's Gem: The Polyhedron Formula and the Birth of Topology is a book on the formula + = for the Euler characteristic of convex polyhedra and its connections to the history of topology. It was written by David Richeson and published in 2008 by the Princeton University Press , with a paperback edition in 2012.

  5. Angular defect - Wikipedia

    en.wikipedia.org/wiki/Angular_defect

    For a polyhedron, the defect at a vertex equals 2π minus the sum of all the angles at the vertex (all the faces at the vertex are included). If a polyhedron is convex, then the defect of each vertex is always positive. If the sum of the angles exceeds a full turn, as occurs in some vertices of many non-convex polyhedra, then the defect is ...

  6. Polyhedral combinatorics - Wikipedia

    en.wikipedia.org/wiki/Polyhedral_combinatorics

    From the fact that each facet of a three-dimensional polyhedron has at least three edges, it follows by double counting that 2e ≥ 3f, and using this inequality to eliminate e and f from Euler's formula leads to the further inequalities e ≤ 3v − 6 and f ≤ 2v − 4. By duality, e ≤ 3f − 6 and v ≤ 2f − 4.

  7. Simon Antoine Jean L'Huilier - Wikipedia

    en.wikipedia.org/wiki/Simon_Antoine_Jean_L'Huilier

    He is known for his work in mathematical analysis and topology, and in particular the generalization of Euler's formula for planar graphs. [ 1 ] He won the mathematics section prize of the Berlin Academy of Sciences for 1784 in response to a question on the foundations of the calculus .

  8. Planar graph - Wikipedia

    en.wikipedia.org/wiki/Planar_graph

    Euler's formula is also valid for convex polyhedra. This is no coincidence: every convex polyhedron can be turned into a connected, simple, planar graph by using the Schlegel diagram of the polyhedron, a perspective projection of the polyhedron onto a plane with the center of perspective chosen near the center of one of the polyhedron's faces ...

  9. Goldberg polyhedron - Wikipedia

    en.wikipedia.org/wiki/Goldberg_polyhedron

    Simple examples of Goldberg polyhedra include the dodecahedron and truncated icosahedron. Other forms can be described by taking a chess knight move from one pentagon to the next: first take m steps in one direction, then turn 60° to the left and take n steps. Such a polyhedron is denoted GP(m,n).