Search results
Results From The WOW.Com Content Network
The rhombus has a square as a special case, and is a special case of a kite and parallelogram. In plane Euclidean geometry, a rhombus (pl.: rhombi or rhombuses) is a quadrilateral whose four sides all have the same length. Another name is equilateral quadrilateral, since equilateral means
A quadrilateral is equidiagonal if and only if [5]: p.19, [4]: Cor.4 K = m n . {\displaystyle \displaystyle K=mn.} This is a direct consequence of the fact that the area of a convex quadrilateral is twice the area of its Varignon parallelogram and that the diagonals in this parallelogram are the bimedians of the quadrilateral.
Each vertex with the obtuse rhombic face angles has 4 cells containing it. Each vertex with the acute rhombic face angles has 6 cells containing it. The rhombic dodecahedron can be twisted on one of its hexagonal cross-sections to form a trapezo-rhombic dodecahedron , which is the cell of a somewhat similar tessellation, the Voronoi diagram of ...
Newton's theorem can easily be derived from Anne's theorem considering that in tangential quadrilaterals the combined lengths of opposite sides are equal (Pitot theorem: a + c = b + d). According to Anne's theorem, showing that the combined areas of opposite triangles PAD and PBC and the combined areas of triangles PAB and PCD are equal is ...
The base pairs form a parallelogram with half the area of the quadrilateral, A q, as the sum of the areas of the four large triangles, A l is 2 A q (each of the two pairs reconstructs the quadrilateral) while that of the small triangles, A s is a quarter of A l (half linear dimensions yields quarter area), and the area of the parallelogram is A ...
A Watt quadrilateral is a quadrilateral with a pair of opposite sides of equal length. [6] A quadric quadrilateral is a convex quadrilateral whose four vertices all lie on the perimeter of a square. [7] A diametric quadrilateral is a cyclic quadrilateral having one of its sides as a diameter of the circumcircle. [8]
Additionally, if a convex kite is not a rhombus, there is a circle outside the kite that is tangent to the extensions of the four sides; therefore, every convex kite that is not a rhombus is an ex-tangential quadrilateral. The convex kites that are not rhombi are exactly the quadrilaterals that are both tangential and ex-tangential. [16]
A rhombus is an orthodiagonal quadrilateral with two pairs of parallel sides (that is, an orthodiagonal quadrilateral that is also a parallelogram). A square is a limiting case of both a kite and a rhombus. Orthodiagonal quadrilaterals that are also equidiagonal quadrilaterals are called midsquare quadrilaterals. [2]