When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Relation (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Relation_(mathematics)

    A function [d] A relation that is functional and total. For example, the red and green relations in the diagram are functions, but the blue and black ones are not. An injection [d] A function that is injective. For example, the green relation in the diagram is an injection, but the red, blue and black ones are not. A surjection [d]

  3. Recurrence relation - Wikipedia

    en.wikipedia.org/wiki/Recurrence_relation

    In mathematics, a recurrence relation is an equation according to which the th term of a sequence of numbers is equal to some combination of the previous terms. Often, only previous terms of the sequence appear in the equation, for a parameter that is independent of ; this number is called the order of the relation.

  4. Linear recurrence with constant coefficients - Wikipedia

    en.wikipedia.org/wiki/Linear_recurrence_with...

    In mathematics (including combinatorics, linear algebra, and dynamical systems), a linear recurrence with constant coefficients [1]: ch. 17 [2]: ch. 10 (also known as a linear recurrence relation or linear difference equation) sets equal to 0 a polynomial that is linear in the various iterates of a variable—that is, in the values of the elements of a sequence.

  5. Transitive relation - Wikipedia

    en.wikipedia.org/wiki/Transitive_relation

    For example, the relation defined by xRy if xy is an even number is intransitive, [13] but not antitransitive. [14] The relation defined by xRy if x is even and y is odd is both transitive and antitransitive. [15] The relation defined by xRy if x is the successor number of y is both intransitive [16] and antitransitive. [17]

  6. Identity function - Wikipedia

    en.wikipedia.org/wiki/Identity_function

    If f : X → Y is any function, then f ∘ id X = f = id Y ∘ f, where "∘" denotes function composition. [4] In particular, id X is the identity element of the monoid of all functions from X to X (under function composition). Since the identity element of a monoid is unique, [5] one can alternately define the identity function on M to

  7. Equivalence relation - Wikipedia

    en.wikipedia.org/wiki/Equivalence_relation

    The equivalence relations on any set X, when ordered by set inclusion, form a complete lattice, called Con X by convention. The canonical map ker : X^X → Con X, relates the monoid X^X of all functions on X and Con X. ker is surjective but not injective. Less formally, the equivalence relation ker on X, takes each function f : X → X to its ...

  8. Function (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Function_(mathematics)

    Diagram of a function Diagram of a relation that is not a function. One reason is that 2 is the first element in more than one ordered pair. Another reason is that neither 3 nor 4 are the first element (input) of any ordered pair therein

  9. Congruence relation - Wikipedia

    en.wikipedia.org/wiki/Congruence_relation

    The lattice Con(A) of all congruence relations on an algebra A is algebraic. John M. Howie described how semigroup theory illustrates congruence relations in universal algebra: In a group a congruence is determined if we know a single congruence class, in particular if we know the normal subgroup which is the class containing the identity.