When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Laplace expansion - Wikipedia

    en.wikipedia.org/wiki/Laplace_expansion

    The Laplace expansion is computationally inefficient for high-dimension matrices, with a time complexity in big O notation of O(n!). Alternatively, using a decomposition into triangular matrices as in the LU decomposition can yield determinants with a time complexity of O(n 3). [2] The following Python code implements the Laplace expansion:

  3. Analytic function of a matrix - Wikipedia

    en.wikipedia.org/wiki/Analytic_function_of_a_matrix

    In mathematics, every analytic function can be used for defining a matrix function that maps square matrices with complex entries to square matrices of the same size. This is used for defining the exponential of a matrix , which is involved in the closed-form solution of systems of linear differential equations .

  4. Matrix exponential - Wikipedia

    en.wikipedia.org/wiki/Matrix_exponential

    For matrix-matrix exponentials, there is a distinction between the left exponential Y X and the right exponential X Y, because the multiplication operator for matrix-to-matrix is not commutative. Moreover, If X is normal and non-singular, then X Y and Y X have the same set of eigenvalues. If X is normal and non-singular, Y is normal, and XY ...

  5. Taylor series - Wikipedia

    en.wikipedia.org/wiki/Taylor_series

    Here we employ a method called "indirect expansion" to expand the given function. This method uses the known Taylor expansion of the exponential function. In order to expand (1 + x)e x as a Taylor series in x, we use the known Taylor series of function e x:

  6. Eigendecomposition of a matrix - Wikipedia

    en.wikipedia.org/wiki/Eigendecomposition_of_a_matrix

    The set of matrices of the form A − λB, where λ is a complex number, is called a pencil; the term matrix pencil can also refer to the pair (A, B) of matrices. [ 14 ] If B is invertible, then the original problem can be written in the form B − 1 A v = λ v {\displaystyle \mathbf {B} ^{-1}\mathbf {A} \mathbf {v} =\lambda \mathbf {v} } which ...

  7. Matrix norm - Wikipedia

    en.wikipedia.org/wiki/Matrix_norm

    Suppose a vector norm ‖ ‖ on and a vector norm ‖ ‖ on are given. Any matrix A induces a linear operator from to with respect to the standard basis, and one defines the corresponding induced norm or operator norm or subordinate norm on the space of all matrices as follows: ‖ ‖, = {‖ ‖: ‖ ‖ =} = {‖ ‖ ‖ ‖:} . where denotes the supremum.

  8. Singular value decomposition - Wikipedia

    en.wikipedia.org/wiki/Singular_value_decomposition

    Specifically, the singular value decomposition of an complex matrix ⁠ ⁠ is a factorization of the form =, where ⁠ ⁠ is an ⁠ ⁠ complex unitary matrix, is an rectangular diagonal matrix with non-negative real numbers on the diagonal, ⁠ ⁠ is an complex unitary matrix, and is the conjugate transpose of ⁠ ⁠. Such decomposition ...

  9. Vectorization (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Vectorization_(mathematics)

    For a symmetric matrix A, the vector vec(A) contains more information than is strictly necessary, since the matrix is completely determined by the symmetry together with the lower triangular portion, that is, the n(n + 1)/2 entries on and below the main diagonal. For such matrices, the half-vectorization is