When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Hydroxylation - Wikipedia

    en.wikipedia.org/wiki/Hydroxylation

    Whereas many hydroxylations insert O atoms into C−H bonds, some reactions add OH groups to unsaturated substrates. The Sharpless dihydroxylation is such a reaction: it converts alkenes into diols. The hydroxy groups are provided by hydrogen peroxide, which adds across the double bond of alkenes. [12]

  3. Syn and anti addition - Wikipedia

    en.wikipedia.org/wiki/Syn_and_anti_addition

    The reaction is considered Markovnikov as it results in water addition with same regiospecificity as a direct hydration reaction. Alkene hydroboration-oxidation: Stereospecific: Can only be syn addition – hydrogen and hydroxyl (-OH) are added to the same face. The reaction is anti-Markovnikov. Hydroxyl attaches to the less substituted carbon.

  4. Diol - Wikipedia

    en.wikipedia.org/wiki/Diol

    The chemical reaction called Sharpless asymmetric dihydroxylation can be used to produce chiral diols from alkenes using an osmate reagent and a chiral catalyst. Another method is the Woodward cis-hydroxylation (cis diol) and the related Prévost reaction (anti diol), which both use iodine and the silver salt of a carboxylic acid.

  5. Woodward cis-hydroxylation - Wikipedia

    en.wikipedia.org/wiki/Woodward_cis-hydroxylation

    The Woodward cis-hydroxylation (also known as the Woodward reaction) is the chemical reaction of alkenes with iodine and silver acetate in wet acetic acid to form cis-diols. [1] [2] (conversion of olefin into cis-diol) The reaction is named after its discoverer, Robert Burns Woodward. The Woodward cis-hydroxylation

  6. Markovnikov's rule - Wikipedia

    en.wikipedia.org/wiki/Markovnikov's_rule

    The same is true when an alkene reacts with water in an additional reaction to form an alcohol that involves carbocation formation. The hydroxyl group (OH) bonds to the carbon that has the greater number of carbon-carbon bonds, while the hydrogen bonds to the carbon on the other end of the double bond, that has more carbon–hydrogen bonds.

  7. Alcohol (chemistry) - Wikipedia

    en.wikipedia.org/wiki/Alcohol_(chemistry)

    Upon treatment with strong acids, alcohols undergo the E1 elimination reaction to produce alkenes. The reaction, in general, obeys Zaitsev's Rule, which states that the most stable (usually the most substituted) alkene is formed. Tertiary alcohols are eliminated easily at just above room temperature, but primary alcohols require a higher ...

  8. Alkene - Wikipedia

    en.wikipedia.org/wiki/Alkene

    The Wittig reaction involves reaction of an aldehyde or ketone with a Wittig reagent (or phosphorane) of the type Ph 3 P=CHR to produce an alkene and Ph 3 P=O. The Wittig reagent is itself prepared easily from triphenylphosphine and an alkyl halide.

  9. Oxymercuration reaction - Wikipedia

    en.wikipedia.org/wiki/Oxymercuration_reaction

    The reaction follows Markovnikov's rule (the hydroxy group will always be added to the more substituted carbon). The oxymercuration part of the reaction involves anti addition of OH group but the demercuration part of the reaction involves free radical mechanism and is not stereospecific, i.e. H and OH may be syn or anti to each other. [2] [3] [4]