Search results
Results From The WOW.Com Content Network
Charge carrier density, also known as carrier concentration, denotes the number of charge carriers per volume. In SI units, it is measured in m −3. As with any density, in principle it can depend on position. However, usually carrier concentration is given as a single number, and represents the average carrier density over the whole material.
The number density (symbol: n or ρ N) is an intensive quantity used to describe the degree of concentration of countable objects (particles, molecules, phonons, cells, galaxies, etc.) in physical space: three-dimensional volumetric number density, two-dimensional areal number density, or one-dimensional linear number density.
Spin density is electron density applied to free radicals. It is defined as the total electron density of electrons of one spin minus the total electron density of the electrons of the other spin. One of the ways to measure it experimentally is by electron spin resonance, [14] neutron diffraction allows direct mapping of the spin density in 3D ...
TEC is the total number of electrons integrated between two points, along a tube of one meter squared cross section, i.e., the electron columnar number density. It is often reported in multiples of the so-called TEC unit, defined as TECU=10 16 el/m 2 ≈ 1.66 × 10 −8 mol⋅m −2. [1]
Static electricity is caused by surface charges consisting of electrons and ions near the surface of objects, and the space charge in a vacuum tube is composed of a cloud of free electrons moving randomly in space. The charge carrier density in a conductor is equal to the number of mobile charge carriers (electrons, ions, etc.) per unit volume ...
The number density of the electron gas was assumed to be =, where Z is the effective number of de-localized electrons per ion, for which Drude used the valence number, A is the atomic mass per mole, [Ashcroft & Mermin 10] is the mass density (mass per unit volume) [Ashcroft & Mermin 10] of the "ions", and N A is the Avogadro constant.
where is the current density, is the external electric field, is the electronic density (number of electrons/volume), is the mean free time and is the electron electric charge. Other quantities that remain the same under the free electron model as under Drude's are the AC susceptibility, the plasma frequency , the magnetoresistance , and the ...
where N is the number of particles in the system, is the number density, () is the pair potential. The pressure of the system can also be calculated by relating the 2nd virial coefficient to (). The pressure can be calculated as follows: [6]