Ads
related to: affine transformation pdf file editorfill-pdf.pdffiller.com has been visited by 1M+ users in the past month
- pdfFiller Account Log In
Easily Sign Up or Login to Your
pdfFiller Account. Try Now!
- Convert PDF to Word
Convert PDF to Editable Online.
No Installation Needed. Try Now!
- Make PDF Forms Fillable
Upload & Fill in PDF Forms Online.
No Installation Needed. Try Now!
- Edit PDF Documents Online
Upload & Edit any PDF File Online.
No Installation Needed. Try Now!
- Type Text in PDF Online
Upload & Type on PDF Files Online.
No Installation Needed. Try Now!
- Write Text in PDF Online
Upload & Write on PDF Forms Online.
No Installation Needed. Try Now!
- pdfFiller Account Log In
Search results
Results From The WOW.Com Content Network
Let X be an affine space over a field k, and V be its associated vector space. An affine transformation is a bijection f from X onto itself that is an affine map; this means that a linear map g from V to V is well defined by the equation () = (); here, as usual, the subtraction of two points denotes the free vector from the second point to the first one, and "well-defined" means that ...
In mathematics, the affine group or general affine group of any affine space is the group of all invertible affine transformations from the space into itself. In the case of a Euclidean space (where the associated field of scalars is the real numbers), the affine group consists of those functions from the space to itself such that the image of every line is a line.
An important consequence of this study is that if we can find an affine transformation such that is a constant times the unit matrix, then we obtain a fixed-point that is invariant to affine transformations (Lindeberg 1994, section 15.4; Lindeberg & Garding 1997). For the purpose of practical implementation, this property can often be reached ...
These are precisely the affine transformations with the property that the image of every line g is a line parallel to g. In projective geometry, a homothetic transformation is a similarity transformation (i.e., fixes a given elliptic involution) that leaves the line at infinity pointwise invariant. [2]
The special affine curvature of an immersed curve is the only (local) invariant of the curve in the following sense: If two curves have the same special affine curvature at every point, then one curve is obtained from the other by means of a special affine transformation. In fact, a slightly stronger statement holds:
Affine involutions can be categorized by the dimension of the affine space of fixed points; this corresponds to the number of values 1 on the diagonal of the similar matrix D (see above), i.e., the dimension of the eigenspace for eigenvalue 1. The affine involutions in 3D are: the identity; the oblique reflection in respect to a plane
Ad
related to: affine transformation pdf file editorfill-pdf.pdffiller.com has been visited by 1M+ users in the past month