Search results
Results From The WOW.Com Content Network
The term "analysis of algorithms" was coined by Donald Knuth. [1] Algorithm analysis is an important part of a broader computational complexity theory, which provides theoretical estimates for the resources needed by any algorithm which solves a given computational problem.
The study of the complexity of explicitly given algorithms is called analysis of algorithms, while the study of the complexity of problems is called computational complexity theory. Both areas are highly related, as the complexity of an algorithm is always an upper bound on the complexity of the problem solved by this algorithm. Moreover, for ...
Graphs of functions commonly used in the analysis of algorithms, showing the number of operations N as the result of input size n for each function. In theoretical computer science, the time complexity is the computational complexity that describes the amount of computer time it takes to run an algorithm.
An early example of algorithm complexity analysis is the running time analysis of the Euclidean algorithm done by Gabriel Lamé in 1844. Before the actual research explicitly devoted to the complexity of algorithmic problems started off, numerous foundations were laid out by various researchers.
Here, complexity refers to the time complexity of performing computations on a multitape Turing machine. [1] See big O notation for an explanation of the notation used. Note: Due to the variety of multiplication algorithms, () below stands in for the complexity of the chosen multiplication algorithm.
In theoretical computer science, smoothed analysis is a way of measuring the complexity of an algorithm. Since its introduction in 2001, smoothed analysis has been used as a basis for considerable research, for problems ranging from mathematical programming, numerical analysis, machine learning, and data mining. [1]
In computational complexity theory, asymptotic computational complexity is the usage of asymptotic analysis for the estimation of computational complexity of algorithms and computational problems, commonly associated with the usage of the big O notation.
In real-time computing, the worst-case execution time is often of particular concern since it is important to know how much time might be needed in the worst case to guarantee that the algorithm will always finish on time. Average performance and worst-case performance are the most used in algorithm analysis.