Search results
Results From The WOW.Com Content Network
This is unfounded because that law has relativistic corrections. For example, the meaning of "r" is physical distance in that classical law, and merely a coordinate in General Relativity.] The Schwarzschild metric can also be derived using the known physics for a circular orbit and a temporarily stationary point mass. [1]
1 Christoffel symbols, covariant derivative. 2 Curvature tensors. Toggle Curvature tensors subsection. 2.1 Definitions. 2.1.1 (3,1) Riemann curvature tensor.
If the derivative does not lie on the tangent space, the right expression is the projection of the derivative over the tangent space (see covariant derivative below). Symbols of the second kind decompose the change with respect to the basis, while symbols of the first kind decompose it with respect to the dual basis.
A Schwarzschild black hole is described by the Schwarzschild metric, and cannot be distinguished from any other Schwarzschild black hole except by its mass. The Schwarzschild black hole is characterized by a surrounding spherical boundary, called the event horizon , which is situated at the Schwarzschild radius ( r s {\displaystyle r_{\text{s ...
This fact has a widely application, such as to analytically distort a Schwarzschild black hole. We employed the axisymmetric Laplace and gradient operators to write Eqs(7.a-7.e) and Eqs(8.a-8.d) in a compact way, which is very useful in the derivation of the characteristic relation Eq(7.f).
Lemaître coordinates are a particular set of coordinates for the Schwarzschild metric—a spherically symmetric solution to the Einstein field equations in vacuum—introduced by Georges Lemaître in 1932. [1] Changing from Schwarzschild to Lemaître coordinates removes the coordinate singularity at the Schwarzschild radius.
The Christoffel symbols of this connection are given in terms of partial derivatives of the metric in local coordinates by the formula = (+) = (, +,,) (where commas indicate partial derivatives). The curvature of spacetime is then given by the Riemann curvature tensor which is defined in terms of the Levi-Civita connection ∇.
In an isotropic chart (on a static spherically symmetric spacetime), the metric (aka line element) takes the form = + (+ (+ ())), < <, < <, < <, < < Depending on context, it may be appropriate to regard , as undetermined functions of the radial coordinate (for example, in deriving an exact static spherically symmetric solution of the Einstein field equation).