When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Entropy (order and disorder) - Wikipedia

    en.wikipedia.org/wiki/Entropy_(order_and_disorder)

    where Q = motional energy ("heat") that is transferred reversibly to the system from the surroundings and T = the absolute temperature at which the transfer occurs. In the years to follow, Ludwig Boltzmann translated these 'alterations of arrangement' into a probabilistic view of order and disorder in gas-phase molecular systems.

  3. Principle of minimum energy - Wikipedia

    en.wikipedia.org/wiki/Principle_of_minimum_energy

    If, rather than an isolated system, we have a closed system, in which the entropy rather than the energy remains constant, then it follows from the first and second laws of thermodynamics that the energy of that system will drop to a minimum value at equilibrium, transferring its energy to the other system. To restate: The maximum entropy ...

  4. Entropy - Wikipedia

    en.wikipedia.org/wiki/Entropy

    The Boltzmann constant, and therefore entropy, have dimensions of energy divided by temperature, which has a unit of joules per kelvin (J⋅K −1) in the International System of Units (or kg⋅m 2 ⋅s −2 ⋅K −1 in terms of base units). The entropy of a substance is usually given as an intensive property — either entropy per unit mass ...

  5. Second law of thermodynamics - Wikipedia

    en.wikipedia.org/wiki/Second_law_of_thermodynamics

    In a reversible or quasi-static, idealized process of transfer of energy as heat to a closed thermodynamic system of interest, (which allows the entry or exit of energy – but not transfer of matter), from an auxiliary thermodynamic system, an infinitesimal increment in the entropy of the system of interest is defined to result from an ...

  6. Orders of magnitude (entropy) - Wikipedia

    en.wikipedia.org/wiki/Orders_of_magnitude_(entropy)

    Entropy equivalent of one bit of information, equal to k times ln(2) [1] 10 −23: 1.381 × 10 −23 J⋅K −1: Boltzmann constant, entropy equivalent of one nat of information. 10 1: 5.74 J⋅K −1: Standard entropy of 1 mole of graphite [2] 10 33: ≈ 10 35 J⋅K −1: Entropy of the Sun (given as ≈ 10 42 erg⋅K −1 in Bekenstein (1973 ...

  7. Entropy (classical thermodynamics) - Wikipedia

    en.wikipedia.org/wiki/Entropy_(classical...

    Figure 1. A thermodynamic model system. Differences in pressure, density, and temperature of a thermodynamic system tend to equalize over time. For example, in a room containing a glass of melting ice, the difference in temperature between the warm room and the cold glass of ice and water is equalized by energy flowing as heat from the room to the cooler ice and water mixture.

  8. Entropy (energy dispersal) - Wikipedia

    en.wikipedia.org/wiki/Entropy_(energy_dispersal)

    The term "entropy" has been in use from early in the history of classical thermodynamics, and with the development of statistical thermodynamics and quantum theory, entropy changes have been described in terms of the mixing or "spreading" of the total energy of each constituent of a system over its particular quantized energy levels.

  9. Maximum entropy thermodynamics - Wikipedia

    en.wikipedia.org/wiki/Maximum_entropy_thermodynamics

    Though the maximum entropy approach is based directly on informational entropy, it is applicable to physics only when there is a clear physical definition of entropy. There is no clear unique general physical definition of entropy for non-equilibrium systems, which are general physical systems considered during a process rather than ...