Search results
Results From The WOW.Com Content Network
In algebra, the partial fraction decomposition or partial fraction expansion of a rational fraction (that is, a fraction such that the numerator and the denominator are both polynomials) is an operation that consists of expressing the fraction as a sum of a polynomial (possibly zero) and one or several fractions with a simpler denominator.
In mathematics, factorization (or factorisation, see English spelling differences) or factoring consists of writing a number or another mathematical object as a product of several factors, usually smaller or simpler objects of the same kind. For example, 3 × 5 is an integer factorization of 15, and (x – 2)(x + 2) is a polynomial ...
In algebra, the factor theorem connects polynomial factors with polynomial roots. Specifically, if f ( x ) {\displaystyle f(x)} is a polynomial, then x − a {\displaystyle x-a} is a factor of f ( x ) {\displaystyle f(x)} if and only if f ( a ) = 0 {\displaystyle f(a)=0} (that is, a {\displaystyle a} is a root of the polynomial).
Modern algorithms and computers can quickly factor univariate polynomials of degree more than 1000 having coefficients with thousands of digits. [3] For this purpose, even for factoring over the rational numbers and number fields , a fundamental step is a factorization of a polynomial over a finite field .
For example, the polynomial x 2 y 2 + 3x 3 + 4y has degree 4, the same degree as the term x 2 y 2. However, a polynomial in variables x and y, is a polynomial in x with coefficients which are polynomials in y, and also a polynomial in y with coefficients which are polynomials in x. The polynomial
In mathematics, a coefficient is a multiplicative factor in some term of a polynomial, a series, or any expression. For example, in the polynomial 7 x 2 − 3 x y + 1.5 + y , {\displaystyle 7x^{2}-3xy+1.5+y,} with variables x {\displaystyle x} and y {\displaystyle y} , the first two terms have the coefficients 7 and −3.
In mathematics, an irreducible polynomial is, roughly speaking, a polynomial that cannot be factored into the product of two non-constant polynomials.The property of irreducibility depends on the nature of the coefficients that are accepted for the possible factors, that is, the ring to which the coefficients of the polynomial and its possible factors are supposed to belong.
These rational points were proven by Nils Bruin using the computer program Kash to be the only ones on C 168, and they give only four distinct trinomial polynomials with Galois group PSL(2,7): x 7-7x+3 (the Trinks polynomial), (1/11)x 7-14x+3 2 (the Erbach-Fisher-McKay polynomial) and two new polynomials with Galois group PSL(2,7),