When.com Web Search

  1. Ad

    related to: calculate gas flow through orifice pressure definition

Search results

  1. Results From The WOW.Com Content Network
  2. Choked flow - Wikipedia

    en.wikipedia.org/wiki/Choked_flow

    The flow of real gases through thin-plate orifices never becomes fully choked. The mass flow rate through the orifice continues to increase as the downstream pressure is lowered to a perfect vacuum, though the mass flow rate increases slowly as the downstream pressure is reduced below the critical pressure. [10]

  3. Orifice plate - Wikipedia

    en.wikipedia.org/wiki/Orifice_plate

    Orifice plate showing vena contracta. An orifice plate is a thin plate with a hole in it, which is usually placed in a pipe. When a fluid (whether liquid or gaseous) passes through the orifice, its pressure builds up slightly upstream of the orifice [1] but as the fluid is forced to converge to pass through the hole, the velocity increases and the fluid pressure decreases.

  4. Flow coefficient - Wikipedia

    en.wikipedia.org/wiki/Flow_coefficient

    The flow coefficient of a device is a relative measure of its efficiency at allowing fluid flow. It describes the relationship between the pressure drop across an orifice valve or other assembly and the corresponding flow rate. Mathematically the flow coefficient C v (or flow-capacity rating of valve) can be expressed as

  5. Fluid conductance - Wikipedia

    en.wikipedia.org/wiki/Fluid_conductance

    This definition proves useful in vacuum systems because under conditions of rarefied gas flow, the conductance of various structures is usually constant, and the overall conductance of a complex network of pipes, orifices and other conveyances can be found in direct analogy to a resistive electrical circuit.

  6. Discharge coefficient - Wikipedia

    en.wikipedia.org/wiki/Discharge_coefficient

    In a nozzle or other constriction, the discharge coefficient (also known as coefficient of discharge or efflux coefficient) is the ratio of the actual discharge to the ideal discharge, [1] i.e., the ratio of the mass flow rate at the discharge end of the nozzle to that of an ideal nozzle which expands an identical working fluid from the same initial conditions to the same exit pressures.

  7. Flow measurement - Wikipedia

    en.wikipedia.org/wiki/Flow_measurement

    For example, an orifice plate produces a pressure drop that is a function of the square of the volume rate of flow through the orifice. A vortex meter primary flow element produces a series of oscillations of pressure. Generally, the physical property generated by the primary flow element is more convenient to measure than the flow itself.

  8. Gas meter - Wikipedia

    en.wikipedia.org/wiki/Gas_meter

    An orifice gas meter consists of a straight length of pipe inside which a precisely known orifice plate creates a pressure drop, thereby affecting flow. Orifice meters are a type of differential meter, all of which infer the rate of gas flow by measuring the pressure difference across a deliberately designed and installed flow disturbance.

  9. Flow distribution in manifolds - Wikipedia

    en.wikipedia.org/wiki/Flow_distribution_in_manifolds

    [4] [5] [6] A generalized model of the flow distribution in channel networks of planar fuel cells. [6] Similar to Ohm's law, the pressure drop is assumed to be proportional to the flow rates. The relationship of pressure drop, flow rate and flow resistance is described as Q 2 = ∆P/R. f = 64/Re for laminar flow where Re is the Reynolds number.