When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Absement - Wikipedia

    en.wikipedia.org/wiki/Absement

    Absement changes as an object remains displaced and stays constant as the object resides at the initial position. It is the first time-integral of the displacement [3] [4] (i.e. absement is the area under a displacement vs. time graph), so the displacement is the rate of change (first time-derivative) of the absement.

  3. Contact mechanics - Wikipedia

    en.wikipedia.org/wiki/Contact_mechanics

    where is the force (positive in compression), is the total surface energy of both surfaces per unit area, and is the equilibrium separation of the two atomic planes. The Bradley model applied the Lennard-Jones potential to find the force of adhesion between two rigid spheres.

  4. Linear motion - Wikipedia

    en.wikipedia.org/wiki/Linear_motion

    These relationships can be demonstrated graphically. The gradient of a line on a displacement time graph represents the velocity. The gradient of the velocity time graph gives the acceleration while the area under the velocity time graph gives the displacement. The area under a graph of acceleration versus time is equal to the change in velocity.

  5. Kinematics - Wikipedia

    en.wikipedia.org/wiki/Kinematics

    For example, consider a tower 50 m south from your home, where the coordinate frame is centered at your home, such that east is in the direction of the x-axis and north is in the direction of the y-axis, then the coordinate vector to the base of the tower is r = (0 m, −50 m, 0 m).

  6. Motion graphs and derivatives - Wikipedia

    en.wikipedia.org/wiki/Motion_graphs_and_derivatives

    Since the velocity of the object is the derivative of the position graph, the area under the line in the velocity vs. time graph is the displacement of the object. (Velocity is on the y-axis and time on the x-axis. Multiplying the velocity by the time, the time cancels out, and only displacement remains.)

  7. Unit dummy force method - Wikipedia

    en.wikipedia.org/wiki/Unit_dummy_force_method

    The Unit dummy force method provides a convenient means for computing displacements in structural systems. It is applicable for both linear and non-linear material behaviours as well as for systems subject to environmental effects, and hence more general than Castigliano's second theorem .

  8. Deformation (engineering) - Wikipedia

    en.wikipedia.org/wiki/Deformation_(engineering)

    Engineers often use this calculation in tensile tests. The area under this elastic region is known as resilience. Note that not all elastic materials undergo linear elastic deformation; some, such as concrete, gray cast iron, and many polymers, respond in a nonlinear fashion. For these materials Hooke's law is inapplicable. [2]

  9. Displacement (geometry) - Wikipedia

    en.wikipedia.org/wiki/Displacement_(geometry)

    Displacement is the shift in location when an object in motion changes from one position to another. [2] For motion over a given interval of time, the displacement divided by the length of the time interval defines the average velocity (a vector), whose magnitude is the average speed (a scalar quantity).