Search results
Results From The WOW.Com Content Network
An example of how indifference curves are obtained as the level curves of a utility function. A graph of indifference curves for several utility levels of an individual consumer is called an indifference map. Points yielding different utility levels are each associated with distinct indifference curves and these indifference curves on the ...
Utility Possibility Frontier. In welfare economics, a utility–possibility frontier (or utility possibilities curve), is a widely used concept analogous to the better-known production–possibility frontier. The graph shows the maximum amount of one person's utility given each level of utility attained by all others in society. [1]
[1]: 164 A useful property of the quasilinear utility function is that the Marshallian/Walrasian demand for , …, does not depend on wealth and is thus not subject to a wealth effect; [1]: 165–166 The absence of a wealth effect simplifies analysis [1]: 222 and makes quasilinear utility functions a common choice for modelling.
Leontief utility functions represent complementary goods. For example: For example: Suppose x 1 {\displaystyle x_{1}} is the number of left shoes and x 2 {\displaystyle x_{2}} the number of right shoes.
A set of convex-shaped indifference curves displays convex preferences: Given a convex indifference curve containing the set of all bundles (of two or more goods) that are all viewed as equally desired, the set of all goods bundles that are viewed as being at least as desired as those on the indifference curve is a convex set.
Left graph: A risk averse utility function is concave (from below), while a risk loving utility function is convex. Middle graph: In standard deviation-expected value space, risk averse indifference curves are upward sloped.
E.g., the commodity is a heterogeneous resource, such as land. Then, the utility functions are not functions of a finite number of variables, but rather set functions defined on Borel subsets of the land. The natural generalization of a linear utility function to that model is an additive set function.
Isoelastic utility for different values of . When > the curve approaches the horizontal axis asymptotically from below with no lower bound.. In economics, the isoelastic function for utility, also known as the isoelastic utility function, or power utility function, is used to express utility in terms of consumption or some other economic variable that a decision-maker is concerned with.