When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Thomson problem - Wikipedia

    en.wikipedia.org/wiki/Thomson_problem

    Geometric solutions of the Thomson problem for N = 4, 6, and 12 electrons are Platonic solids whose faces are all congruent equilateral triangles. Numerical solutions for N = 8 and 20 are not the regular convex polyhedral configurations of the remaining two Platonic solids, the cube and dodecahedron respectively.

  3. Uniqueness theorem for Poisson's equation - Wikipedia

    en.wikipedia.org/wiki/Uniqueness_theorem_for...

    The uniqueness theorem for Poisson's equation states that, for a large class of boundary conditions, the equation may have many solutions, but the gradient of every solution is the same. In the case of electrostatics , this means that there is a unique electric field derived from a potential function satisfying Poisson's equation under the ...

  4. Poisson–Boltzmann equation - Wikipedia

    en.wikipedia.org/wiki/Poisson–Boltzmann_equation

    The Poisson–Boltzmann equation can be applied to biomolecular systems. One example is the binding of electrolytes to biomolecules in a solution. This process is dependent upon the electrostatic field generated by the molecule, the electrostatic potential on the surface of the molecule, as well as the electrostatic free energy. [13]

  5. Vacuum permittivity - Wikipedia

    en.wikipedia.org/wiki/Vacuum_permittivity

    Vacuum permittivity, commonly denoted ε 0 (pronounced "epsilon nought" or "epsilon zero"), is the value of the absolute dielectric permittivity of classical vacuum.It may also be referred to as the permittivity of free space, the electric constant, or the distributed capacitance of the vacuum.

  6. Method of image charges - Wikipedia

    en.wikipedia.org/wiki/Method_of_image_charges

    The method of image charges (also known as the method of images and method of mirror charges) is a basic problem-solving tool in electrostatics.The name originates from the replacement of certain elements in the original layout with fictitious charges, which replicates the boundary conditions of the problem (see Dirichlet boundary conditions or Neumann boundary conditions).

  7. Coulomb's law - Wikipedia

    en.wikipedia.org/wiki/Coulomb's_law

    Electricity and the Atom Archived 2009-02-21 at the Wayback Machine—a chapter from an online textbook A maze game for teaching Coulomb's law —a game created by the Molecular Workbench software Electric Charges, Polarization, Electric Force, Coulomb's Law Walter Lewin, 8.02 Electricity and Magnetism, Spring 2002: Lecture 1 (video).

  8. Electric potential energy - Wikipedia

    en.wikipedia.org/wiki/Electric_potential_energy

    The electrostatic potential energy U E stored in a system of two charges is equal to the electrostatic potential energy of a charge in the electrostatic potential generated by the other. That is to say, if charge q 1 generates an electrostatic potential V 1 , which is a function of position r , then U E = q 2 V 1 ( r 2 ) . {\displaystyle U ...

  9. List of electromagnetism equations - Wikipedia

    en.wikipedia.org/wiki/List_of_electromagnetism...

    Continuous charge distribution. The volume charge density ρ is the amount of charge per unit volume (cube), surface charge density σ is amount per unit surface area (circle) with outward unit normal nĚ‚, d is the dipole moment between two point charges, the volume density of these is the polarization density P.